Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos
This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2019-12, Vol.357, p.112571, Article 112571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112571 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 357 |
creator | Pepper, Nick Montomoli, Francesco Sharma, Sanjiv |
description | This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available.
The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model.
•A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed. |
doi_str_mv | 10.1016/j.cma.2019.112571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315946699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519304360</els_id><sourcerecordid>2315946699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz62ZJP0InpZl_YAVFdxzSNOUTek2a5Iq_fdmqWfnMjPwvjMvD0K3gDPAUNx3mTrIjGDgGQDJSzhDC6hKnhKg1TlaYMzytKxIfomuvO9wrArIAm1exz4Yr2Svk92gtAvSDGFKPkY5BNMaJYOxQ_Jjwj5ZudoEJ92UvNt-GuzByD5Z76X11-iilb3XN399iXaPm8_1c7p9e3pZr7apokUVUgU1KyQjFQFeM6ZI3Hlel41sVa1LQnEbJ1Iq2uZNLRmvYjGS0yKK6gbTJbqb7x6d_Rq1D6KzoxviS0Eo5JwVBedRBbNKOeu90604OnOIuQVgcaIlOhFpiRMtMdOKnofZo2P8b6Od8MroCKQxTqsgGmv-cf8CPp1ySw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315946699</pqid></control><display><type>article</type><title>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pepper, Nick ; Montomoli, Francesco ; Sharma, Sanjiv</creator><creatorcontrib>Pepper, Nick ; Montomoli, Francesco ; Sharma, Sanjiv</creatorcontrib><description>This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available.
The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model.
•A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112571</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Component reliability ; Computer simulation ; Equivalence ; Industrial applications ; Matching ; Method of moments ; Monte Carlo simulation ; Multiple objective analysis ; Multiscale modelling ; Optimization ; PDF matching ; Polynomial Chaos Expansions ; Polynomials ; Probability density functions ; SAMBA ; Scale models ; Statistical analysis ; Stochastic upscaling ; Uncertainty ; Uncertainty Quantification</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-12, Vol.357, p.112571, Article 112571</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</citedby><cites>FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</cites><orcidid>0000-0002-2241-3389 ; 0000-0003-2829-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.112571$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><creatorcontrib>Sharma, Sanjiv</creatorcontrib><title>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</title><title>Computer methods in applied mechanics and engineering</title><description>This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available.
The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model.
•A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.</description><subject>Component reliability</subject><subject>Computer simulation</subject><subject>Equivalence</subject><subject>Industrial applications</subject><subject>Matching</subject><subject>Method of moments</subject><subject>Monte Carlo simulation</subject><subject>Multiple objective analysis</subject><subject>Multiscale modelling</subject><subject>Optimization</subject><subject>PDF matching</subject><subject>Polynomial Chaos Expansions</subject><subject>Polynomials</subject><subject>Probability density functions</subject><subject>SAMBA</subject><subject>Scale models</subject><subject>Statistical analysis</subject><subject>Stochastic upscaling</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz62ZJP0InpZl_YAVFdxzSNOUTek2a5Iq_fdmqWfnMjPwvjMvD0K3gDPAUNx3mTrIjGDgGQDJSzhDC6hKnhKg1TlaYMzytKxIfomuvO9wrArIAm1exz4Yr2Svk92gtAvSDGFKPkY5BNMaJYOxQ_Jjwj5ZudoEJ92UvNt-GuzByD5Z76X11-iilb3XN399iXaPm8_1c7p9e3pZr7apokUVUgU1KyQjFQFeM6ZI3Hlel41sVa1LQnEbJ1Iq2uZNLRmvYjGS0yKK6gbTJbqb7x6d_Rq1D6KzoxviS0Eo5JwVBedRBbNKOeu90604OnOIuQVgcaIlOhFpiRMtMdOKnofZo2P8b6Od8MroCKQxTqsgGmv-cf8CPp1ySw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Pepper, Nick</creator><creator>Montomoli, Francesco</creator><creator>Sharma, Sanjiv</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2241-3389</orcidid><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid></search><sort><creationdate>20191201</creationdate><title>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</title><author>Pepper, Nick ; Montomoli, Francesco ; Sharma, Sanjiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Component reliability</topic><topic>Computer simulation</topic><topic>Equivalence</topic><topic>Industrial applications</topic><topic>Matching</topic><topic>Method of moments</topic><topic>Monte Carlo simulation</topic><topic>Multiple objective analysis</topic><topic>Multiscale modelling</topic><topic>Optimization</topic><topic>PDF matching</topic><topic>Polynomial Chaos Expansions</topic><topic>Polynomials</topic><topic>Probability density functions</topic><topic>SAMBA</topic><topic>Scale models</topic><topic>Statistical analysis</topic><topic>Stochastic upscaling</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><creatorcontrib>Sharma, Sanjiv</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pepper, Nick</au><au>Montomoli, Francesco</au><au>Sharma, Sanjiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>357</volume><spage>112571</spage><pages>112571-</pages><artnum>112571</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available.
The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model.
•A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112571</doi><orcidid>https://orcid.org/0000-0002-2241-3389</orcidid><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2019-12, Vol.357, p.112571, Article 112571 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2315946699 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Component reliability Computer simulation Equivalence Industrial applications Matching Method of moments Monte Carlo simulation Multiple objective analysis Multiscale modelling Optimization PDF matching Polynomial Chaos Expansions Polynomials Probability density functions SAMBA Scale models Statistical analysis Stochastic upscaling Uncertainty Uncertainty Quantification |
title | Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Uncertainty%20Quantification%20with%20Arbitrary%20Polynomial%20Chaos&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Pepper,%20Nick&rft.date=2019-12-01&rft.volume=357&rft.spage=112571&rft.pages=112571-&rft.artnum=112571&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112571&rft_dat=%3Cproquest_cross%3E2315946699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315946699&rft_id=info:pmid/&rft_els_id=S0045782519304360&rfr_iscdi=true |