Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos

This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2019-12, Vol.357, p.112571, Article 112571
Hauptverfasser: Pepper, Nick, Montomoli, Francesco, Sharma, Sanjiv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112571
container_title Computer methods in applied mechanics and engineering
container_volume 357
creator Pepper, Nick
Montomoli, Francesco
Sharma, Sanjiv
description This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available. The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model. •A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.
doi_str_mv 10.1016/j.cma.2019.112571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315946699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519304360</els_id><sourcerecordid>2315946699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz62ZJP0InpZl_YAVFdxzSNOUTek2a5Iq_fdmqWfnMjPwvjMvD0K3gDPAUNx3mTrIjGDgGQDJSzhDC6hKnhKg1TlaYMzytKxIfomuvO9wrArIAm1exz4Yr2Svk92gtAvSDGFKPkY5BNMaJYOxQ_Jjwj5ZudoEJ92UvNt-GuzByD5Z76X11-iilb3XN399iXaPm8_1c7p9e3pZr7apokUVUgU1KyQjFQFeM6ZI3Hlel41sVa1LQnEbJ1Iq2uZNLRmvYjGS0yKK6gbTJbqb7x6d_Rq1D6KzoxviS0Eo5JwVBedRBbNKOeu90604OnOIuQVgcaIlOhFpiRMtMdOKnofZo2P8b6Od8MroCKQxTqsgGmv-cf8CPp1ySw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315946699</pqid></control><display><type>article</type><title>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pepper, Nick ; Montomoli, Francesco ; Sharma, Sanjiv</creator><creatorcontrib>Pepper, Nick ; Montomoli, Francesco ; Sharma, Sanjiv</creatorcontrib><description>This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available. The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model. •A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112571</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Component reliability ; Computer simulation ; Equivalence ; Industrial applications ; Matching ; Method of moments ; Monte Carlo simulation ; Multiple objective analysis ; Multiscale modelling ; Optimization ; PDF matching ; Polynomial Chaos Expansions ; Polynomials ; Probability density functions ; SAMBA ; Scale models ; Statistical analysis ; Stochastic upscaling ; Uncertainty ; Uncertainty Quantification</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-12, Vol.357, p.112571, Article 112571</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</citedby><cites>FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</cites><orcidid>0000-0002-2241-3389 ; 0000-0003-2829-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.112571$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><creatorcontrib>Sharma, Sanjiv</creatorcontrib><title>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</title><title>Computer methods in applied mechanics and engineering</title><description>This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available. The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model. •A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.</description><subject>Component reliability</subject><subject>Computer simulation</subject><subject>Equivalence</subject><subject>Industrial applications</subject><subject>Matching</subject><subject>Method of moments</subject><subject>Monte Carlo simulation</subject><subject>Multiple objective analysis</subject><subject>Multiscale modelling</subject><subject>Optimization</subject><subject>PDF matching</subject><subject>Polynomial Chaos Expansions</subject><subject>Polynomials</subject><subject>Probability density functions</subject><subject>SAMBA</subject><subject>Scale models</subject><subject>Statistical analysis</subject><subject>Stochastic upscaling</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz62ZJP0InpZl_YAVFdxzSNOUTek2a5Iq_fdmqWfnMjPwvjMvD0K3gDPAUNx3mTrIjGDgGQDJSzhDC6hKnhKg1TlaYMzytKxIfomuvO9wrArIAm1exz4Yr2Svk92gtAvSDGFKPkY5BNMaJYOxQ_Jjwj5ZudoEJ92UvNt-GuzByD5Z76X11-iilb3XN399iXaPm8_1c7p9e3pZr7apokUVUgU1KyQjFQFeM6ZI3Hlel41sVa1LQnEbJ1Iq2uZNLRmvYjGS0yKK6gbTJbqb7x6d_Rq1D6KzoxviS0Eo5JwVBedRBbNKOeu90604OnOIuQVgcaIlOhFpiRMtMdOKnofZo2P8b6Od8MroCKQxTqsgGmv-cf8CPp1ySw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Pepper, Nick</creator><creator>Montomoli, Francesco</creator><creator>Sharma, Sanjiv</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2241-3389</orcidid><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid></search><sort><creationdate>20191201</creationdate><title>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</title><author>Pepper, Nick ; Montomoli, Francesco ; Sharma, Sanjiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c1b46a428219b44c21b495b7dafcbe7230fafc27c3f5dba498888425365b7bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Component reliability</topic><topic>Computer simulation</topic><topic>Equivalence</topic><topic>Industrial applications</topic><topic>Matching</topic><topic>Method of moments</topic><topic>Monte Carlo simulation</topic><topic>Multiple objective analysis</topic><topic>Multiscale modelling</topic><topic>Optimization</topic><topic>PDF matching</topic><topic>Polynomial Chaos Expansions</topic><topic>Polynomials</topic><topic>Probability density functions</topic><topic>SAMBA</topic><topic>Scale models</topic><topic>Statistical analysis</topic><topic>Stochastic upscaling</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><creatorcontrib>Sharma, Sanjiv</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pepper, Nick</au><au>Montomoli, Francesco</au><au>Sharma, Sanjiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>357</volume><spage>112571</spage><pages>112571-</pages><artnum>112571</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work presents a framework for upscaling uncertainty in multiscale models. The problem is relevant to aerospace applications where it is necessary to estimate the reliability of a complete part such as an aeroplane wing from experimental data on coupons. A particular aspect relevant to aerospace is the scarcity of data available. The framework needs two main aspects: an upscaling equivalence in a probabilistic sense and an efficient (sparse) Non-Intrusive Polynomial Chaos formulation able to deal with scarce data. The upscaling equivalence is defined by a Probability Density Function (PDF) matching approach. By representing the inputs of a coarse-scale model with a generalised Polynomial Chaos Expansion (gPCE) the stochastic upscaling problem can be recast as an optimisation problem. In order to define a data driven framework able to deal with scarce data a Sparse Approximation for Moment Based Arbitrary Polynomial Chaos is used. Sparsity allows the solution of this optimisation problem to be made less computationally intensive than upscaling methods relying on Monte Carlo sampling. Moreover this makes the PDF matching method more viable for industrial applications where individual simulation runs may be computationally expensive. Arbitrary Polynomial Chaos is used to allow the framework to use directly experimental data. Finally, the difference between the distributions is quantified using the Kolmogorov–Smirnov (KS) distance and the method of moments in the case of a multi-objective optimisation. It is shown that filtering of dynamical information contained in the fine-scale by the coarse model may be avoided through the construction of a low-fidelity, high-order model. •A method for upscaling uncertainty in multiscale models using a PDF matching approach.•A data driven framework is defined using Arbitrary Polynomial Chaos.•Metrics for quantifying the statistical distance between PDFs are discussed.•A method to prevent fine-scale dynamics being filtered at coarser scales is proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112571</doi><orcidid>https://orcid.org/0000-0002-2241-3389</orcidid><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2019-12, Vol.357, p.112571, Article 112571
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2315946699
source ScienceDirect Journals (5 years ago - present)
subjects Component reliability
Computer simulation
Equivalence
Industrial applications
Matching
Method of moments
Monte Carlo simulation
Multiple objective analysis
Multiscale modelling
Optimization
PDF matching
Polynomial Chaos Expansions
Polynomials
Probability density functions
SAMBA
Scale models
Statistical analysis
Stochastic upscaling
Uncertainty
Uncertainty Quantification
title Multiscale Uncertainty Quantification with Arbitrary Polynomial Chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Uncertainty%20Quantification%20with%20Arbitrary%20Polynomial%20Chaos&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Pepper,%20Nick&rft.date=2019-12-01&rft.volume=357&rft.spage=112571&rft.pages=112571-&rft.artnum=112571&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112571&rft_dat=%3Cproquest_cross%3E2315946699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315946699&rft_id=info:pmid/&rft_els_id=S0045782519304360&rfr_iscdi=true