On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition

Despite the efforts throughout the last few decades, asphaltene deposition remains as one of the greatest challenges in the petroleum industry. In this work, we present a comprehensive series of experimental studies to better understand the asphaltene precipitation, aggregation, and deposition mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2020-01, Vol.260, p.116250, Article 116250
Hauptverfasser: Enayat, Shayan, Rajan Babu, Narmadha, Kuang, Jun, Rezaee, Sara, Lu, Haiqing, Tavakkoli, Mohammad, Wang, Jianxin, Vargas, Francisco M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116250
container_title Fuel (Guildford)
container_volume 260
creator Enayat, Shayan
Rajan Babu, Narmadha
Kuang, Jun
Rezaee, Sara
Lu, Haiqing
Tavakkoli, Mohammad
Wang, Jianxin
Vargas, Francisco M.
description Despite the efforts throughout the last few decades, asphaltene deposition remains as one of the greatest challenges in the petroleum industry. In this work, we present a comprehensive series of experimental studies to better understand the asphaltene precipitation, aggregation, and deposition mechanisms. Here, we introduce a simple method to determine the amount of precipitated asphaltene using NIR spectroscopy measurements without the implementation of calibration curves. Moreover, the kinetics of asphaltene precipitation and aggregation is simultaneously investigated by a newly developed, fast, and reliable NIR spectroscopy technique. In the new method, only less than 2 ml of sample is required for each experiment. In addition, unlike gravimetric techniques, less time consuming and labor-intensive measurements can be performed. In addition, the temperature can be controlled; hence, experiments can be conducted to evaluate the effects of temperature and the driving force on the kinetics of asphaltene precipitation and aggregation. Subsequently, the quantified precipitated asphaltene amount can be used to calibrate the precipitation and aggregation kinetic parameters of the asphaltene deposition model. The results obtained from the kinetics experiments facilitate in establishing a function to scale the precipitation kinetic parameter from laboratory-scale experiments to real field high-pressure high-temperature conditions. Additionally, a multi-section stainless steel packed bed column is proposed to study asphaltene deposition at high temperature and under dynamic conditions. In these experiments, the amount of deposited asphaltene is directly quantified. The results from the packed bed column deposition tests can be used to calibrate the deposition kinetic parameter of the asphaltene deposition model.
doi_str_mv 10.1016/j.fuel.2019.116250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315946296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119316047</els_id><sourcerecordid>2315946296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-feb84684fbd368af6196fb90a9883532750047359306c80440ae45c68403a7213</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcFt7bmuym4EfELBmaj65BpX2dSOk1NMoP6600d3bp63Me5L-EgdElwQTCRN13R7qAvKCZVQYikAh-hGVEly0si2DGa4UTllElyis5C6DDGpRJ8hr6WQxY3kDWwh96NWxhi5toMPkbwdkqmz7YQN64JWXQJi-C3doCfkjcRwoSbMG5MHyHtRw-1HW000brhOjPrtYf1XxiadGF0wU75HJ20pg9w8Tvn6O3x4fX-OV8sn17u7xZ5zaSIeQsrxaXi7aphUplWkkq2qwqbSikmGC0FxrxkomJY1gpzjg1wUacGZqakhM3R1eHu6N37DkLUndv5IT2pKSOi4pJWMlH0QNXeheCh1WMSYPynJlhPjnWnJ8d6cqwPjlPp9lCC9P-9Ba9DbWGoobFJQ9SNs__VvwHL6oW9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315946296</pqid></control><display><type>article</type><title>On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Enayat, Shayan ; Rajan Babu, Narmadha ; Kuang, Jun ; Rezaee, Sara ; Lu, Haiqing ; Tavakkoli, Mohammad ; Wang, Jianxin ; Vargas, Francisco M.</creator><creatorcontrib>Enayat, Shayan ; Rajan Babu, Narmadha ; Kuang, Jun ; Rezaee, Sara ; Lu, Haiqing ; Tavakkoli, Mohammad ; Wang, Jianxin ; Vargas, Francisco M.</creatorcontrib><description>Despite the efforts throughout the last few decades, asphaltene deposition remains as one of the greatest challenges in the petroleum industry. In this work, we present a comprehensive series of experimental studies to better understand the asphaltene precipitation, aggregation, and deposition mechanisms. Here, we introduce a simple method to determine the amount of precipitated asphaltene using NIR spectroscopy measurements without the implementation of calibration curves. Moreover, the kinetics of asphaltene precipitation and aggregation is simultaneously investigated by a newly developed, fast, and reliable NIR spectroscopy technique. In the new method, only less than 2 ml of sample is required for each experiment. In addition, unlike gravimetric techniques, less time consuming and labor-intensive measurements can be performed. In addition, the temperature can be controlled; hence, experiments can be conducted to evaluate the effects of temperature and the driving force on the kinetics of asphaltene precipitation and aggregation. Subsequently, the quantified precipitated asphaltene amount can be used to calibrate the precipitation and aggregation kinetic parameters of the asphaltene deposition model. The results obtained from the kinetics experiments facilitate in establishing a function to scale the precipitation kinetic parameter from laboratory-scale experiments to real field high-pressure high-temperature conditions. Additionally, a multi-section stainless steel packed bed column is proposed to study asphaltene deposition at high temperature and under dynamic conditions. In these experiments, the amount of deposited asphaltene is directly quantified. The results from the packed bed column deposition tests can be used to calibrate the deposition kinetic parameter of the asphaltene deposition model.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.116250</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agglomeration ; Aggregation ; Asphaltene ; Asphaltenes ; Calibration ; Deposition ; Experimental methods ; Experiments ; Gravimetric techniques ; Gravimetry ; High temperature ; Kinetics ; Mathematical models ; Packed beds ; Parameters ; Petroleum industry ; Precipitation ; Spectroscopy ; Spectrum analysis ; Stainless steel ; Stainless steels ; Temperature effects</subject><ispartof>Fuel (Guildford), 2020-01, Vol.260, p.116250, Article 116250</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-feb84684fbd368af6196fb90a9883532750047359306c80440ae45c68403a7213</citedby><cites>FETCH-LOGICAL-c365t-feb84684fbd368af6196fb90a9883532750047359306c80440ae45c68403a7213</cites><orcidid>0000-0002-5287-0900 ; 0000-0002-8872-8930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236119316047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Enayat, Shayan</creatorcontrib><creatorcontrib>Rajan Babu, Narmadha</creatorcontrib><creatorcontrib>Kuang, Jun</creatorcontrib><creatorcontrib>Rezaee, Sara</creatorcontrib><creatorcontrib>Lu, Haiqing</creatorcontrib><creatorcontrib>Tavakkoli, Mohammad</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><creatorcontrib>Vargas, Francisco M.</creatorcontrib><title>On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition</title><title>Fuel (Guildford)</title><description>Despite the efforts throughout the last few decades, asphaltene deposition remains as one of the greatest challenges in the petroleum industry. In this work, we present a comprehensive series of experimental studies to better understand the asphaltene precipitation, aggregation, and deposition mechanisms. Here, we introduce a simple method to determine the amount of precipitated asphaltene using NIR spectroscopy measurements without the implementation of calibration curves. Moreover, the kinetics of asphaltene precipitation and aggregation is simultaneously investigated by a newly developed, fast, and reliable NIR spectroscopy technique. In the new method, only less than 2 ml of sample is required for each experiment. In addition, unlike gravimetric techniques, less time consuming and labor-intensive measurements can be performed. In addition, the temperature can be controlled; hence, experiments can be conducted to evaluate the effects of temperature and the driving force on the kinetics of asphaltene precipitation and aggregation. Subsequently, the quantified precipitated asphaltene amount can be used to calibrate the precipitation and aggregation kinetic parameters of the asphaltene deposition model. The results obtained from the kinetics experiments facilitate in establishing a function to scale the precipitation kinetic parameter from laboratory-scale experiments to real field high-pressure high-temperature conditions. Additionally, a multi-section stainless steel packed bed column is proposed to study asphaltene deposition at high temperature and under dynamic conditions. In these experiments, the amount of deposited asphaltene is directly quantified. The results from the packed bed column deposition tests can be used to calibrate the deposition kinetic parameter of the asphaltene deposition model.</description><subject>Agglomeration</subject><subject>Aggregation</subject><subject>Asphaltene</subject><subject>Asphaltenes</subject><subject>Calibration</subject><subject>Deposition</subject><subject>Experimental methods</subject><subject>Experiments</subject><subject>Gravimetric techniques</subject><subject>Gravimetry</subject><subject>High temperature</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Packed beds</subject><subject>Parameters</subject><subject>Petroleum industry</subject><subject>Precipitation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Temperature effects</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcFt7bmuym4EfELBmaj65BpX2dSOk1NMoP6600d3bp63Me5L-EgdElwQTCRN13R7qAvKCZVQYikAh-hGVEly0si2DGa4UTllElyis5C6DDGpRJ8hr6WQxY3kDWwh96NWxhi5toMPkbwdkqmz7YQN64JWXQJi-C3doCfkjcRwoSbMG5MHyHtRw-1HW000brhOjPrtYf1XxiadGF0wU75HJ20pg9w8Tvn6O3x4fX-OV8sn17u7xZ5zaSIeQsrxaXi7aphUplWkkq2qwqbSikmGC0FxrxkomJY1gpzjg1wUacGZqakhM3R1eHu6N37DkLUndv5IT2pKSOi4pJWMlH0QNXeheCh1WMSYPynJlhPjnWnJ8d6cqwPjlPp9lCC9P-9Ba9DbWGoobFJQ9SNs__VvwHL6oW9</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Enayat, Shayan</creator><creator>Rajan Babu, Narmadha</creator><creator>Kuang, Jun</creator><creator>Rezaee, Sara</creator><creator>Lu, Haiqing</creator><creator>Tavakkoli, Mohammad</creator><creator>Wang, Jianxin</creator><creator>Vargas, Francisco M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5287-0900</orcidid><orcidid>https://orcid.org/0000-0002-8872-8930</orcidid></search><sort><creationdate>20200115</creationdate><title>On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition</title><author>Enayat, Shayan ; Rajan Babu, Narmadha ; Kuang, Jun ; Rezaee, Sara ; Lu, Haiqing ; Tavakkoli, Mohammad ; Wang, Jianxin ; Vargas, Francisco M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-feb84684fbd368af6196fb90a9883532750047359306c80440ae45c68403a7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Aggregation</topic><topic>Asphaltene</topic><topic>Asphaltenes</topic><topic>Calibration</topic><topic>Deposition</topic><topic>Experimental methods</topic><topic>Experiments</topic><topic>Gravimetric techniques</topic><topic>Gravimetry</topic><topic>High temperature</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Packed beds</topic><topic>Parameters</topic><topic>Petroleum industry</topic><topic>Precipitation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enayat, Shayan</creatorcontrib><creatorcontrib>Rajan Babu, Narmadha</creatorcontrib><creatorcontrib>Kuang, Jun</creatorcontrib><creatorcontrib>Rezaee, Sara</creatorcontrib><creatorcontrib>Lu, Haiqing</creatorcontrib><creatorcontrib>Tavakkoli, Mohammad</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><creatorcontrib>Vargas, Francisco M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enayat, Shayan</au><au>Rajan Babu, Narmadha</au><au>Kuang, Jun</au><au>Rezaee, Sara</au><au>Lu, Haiqing</au><au>Tavakkoli, Mohammad</au><au>Wang, Jianxin</au><au>Vargas, Francisco M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>260</volume><spage>116250</spage><pages>116250-</pages><artnum>116250</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Despite the efforts throughout the last few decades, asphaltene deposition remains as one of the greatest challenges in the petroleum industry. In this work, we present a comprehensive series of experimental studies to better understand the asphaltene precipitation, aggregation, and deposition mechanisms. Here, we introduce a simple method to determine the amount of precipitated asphaltene using NIR spectroscopy measurements without the implementation of calibration curves. Moreover, the kinetics of asphaltene precipitation and aggregation is simultaneously investigated by a newly developed, fast, and reliable NIR spectroscopy technique. In the new method, only less than 2 ml of sample is required for each experiment. In addition, unlike gravimetric techniques, less time consuming and labor-intensive measurements can be performed. In addition, the temperature can be controlled; hence, experiments can be conducted to evaluate the effects of temperature and the driving force on the kinetics of asphaltene precipitation and aggregation. Subsequently, the quantified precipitated asphaltene amount can be used to calibrate the precipitation and aggregation kinetic parameters of the asphaltene deposition model. The results obtained from the kinetics experiments facilitate in establishing a function to scale the precipitation kinetic parameter from laboratory-scale experiments to real field high-pressure high-temperature conditions. Additionally, a multi-section stainless steel packed bed column is proposed to study asphaltene deposition at high temperature and under dynamic conditions. In these experiments, the amount of deposited asphaltene is directly quantified. The results from the packed bed column deposition tests can be used to calibrate the deposition kinetic parameter of the asphaltene deposition model.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.116250</doi><orcidid>https://orcid.org/0000-0002-5287-0900</orcidid><orcidid>https://orcid.org/0000-0002-8872-8930</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2020-01, Vol.260, p.116250, Article 116250
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2315946296
source Elsevier ScienceDirect Journals Complete
subjects Agglomeration
Aggregation
Asphaltene
Asphaltenes
Calibration
Deposition
Experimental methods
Experiments
Gravimetric techniques
Gravimetry
High temperature
Kinetics
Mathematical models
Packed beds
Parameters
Petroleum industry
Precipitation
Spectroscopy
Spectrum analysis
Stainless steel
Stainless steels
Temperature effects
title On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20development%20of%20experimental%20methods%20to%20determine%20the%20rates%20of%20asphaltene%20precipitation,%20aggregation,%20and%20deposition&rft.jtitle=Fuel%20(Guildford)&rft.au=Enayat,%20Shayan&rft.date=2020-01-15&rft.volume=260&rft.spage=116250&rft.pages=116250-&rft.artnum=116250&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.116250&rft_dat=%3Cproquest_cross%3E2315946296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315946296&rft_id=info:pmid/&rft_els_id=S0016236119316047&rfr_iscdi=true