Entanglement Hamiltonian of quantum critical chains and conformal field theories
We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW ansatz by both comparing the BW Rényi entropy to the exact resu...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-10, Vol.100 (15), Article 155122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Physical review. B |
container_volume | 100 |
creator | Mendes-Santos, T. Giudici, G. Dalmonte, M. Rajabpour, M. A. |
description | We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW ansatz by both comparing the BW Rényi entropy to the exact results and investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including integrable models such as the transverse field Ising, three-state Potts and XXZ chains, and the nonintegrable bilinear-biquadratic model. We show that the Rényi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Rényi entropies also faithfully capture the corrections to the conformal field theory scaling associated with the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW ansatz also can be employed to predict properties of the eigenvectors of the reduced density matrices and is thus potentially applicable to other entanglement-related quantities such as negativity. |
doi_str_mv | 10.1103/PhysRevB.100.155122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315943876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315943876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-5fbf27f199dce66dadd0fc6fcc551aae3522c5cd86ece8f7c8d6b986a791322b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGp_gZuA66n5aDKTpZZqhYJFdD2k-bApM0mbZIT-e1Orrt7jcLmPdwC4xWiKMaL36-0xvZmvxylGhTCGCbkAIzLjohKCi8v_naFrMElphxDCHIkaiRFYL3yW_rMzvfEZLmXvuhy8kx4GCw-D9HnooYouOyU7qLbS-QSl11AFb0PsC7TOdBrmrQnRmXQDrqzskpn8zjH4eFq8z5fV6vX5Zf6wqhQVNFfMbiypLRZCK8O5llojq7hVqjwgpaGMEMWUbrhRprG1ajTfiIbLWmBKyIaOwd25dx_DYTApt7swRF9OtoRiJma0qXlJ0XNKxZBSNLbdR9fLeGwxak_22j97BRTyY49-A0lxZko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315943876</pqid></control><display><type>article</type><title>Entanglement Hamiltonian of quantum critical chains and conformal field theories</title><source>American Physical Society Journals</source><creator>Mendes-Santos, T. ; Giudici, G. ; Dalmonte, M. ; Rajabpour, M. A.</creator><creatorcontrib>Mendes-Santos, T. ; Giudici, G. ; Dalmonte, M. ; Rajabpour, M. A.</creatorcontrib><description>We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW ansatz by both comparing the BW Rényi entropy to the exact results and investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including integrable models such as the transverse field Ising, three-state Potts and XXZ chains, and the nonintegrable bilinear-biquadratic model. We show that the Rényi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Rényi entropies also faithfully capture the corrections to the conformal field theory scaling associated with the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW ansatz also can be employed to predict properties of the eigenvectors of the reduced density matrices and is thus potentially applicable to other entanglement-related quantities such as negativity.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.155122</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chains ; Eigenvectors ; Entanglement ; Field theory ; Flux density ; Ising model ; Numerical methods ; Operators (mathematics) ; Scaling</subject><ispartof>Physical review. B, 2019-10, Vol.100 (15), Article 155122</ispartof><rights>Copyright American Physical Society Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-5fbf27f199dce66dadd0fc6fcc551aae3522c5cd86ece8f7c8d6b986a791322b3</citedby><cites>FETCH-LOGICAL-c393t-5fbf27f199dce66dadd0fc6fcc551aae3522c5cd86ece8f7c8d6b986a791322b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Mendes-Santos, T.</creatorcontrib><creatorcontrib>Giudici, G.</creatorcontrib><creatorcontrib>Dalmonte, M.</creatorcontrib><creatorcontrib>Rajabpour, M. A.</creatorcontrib><title>Entanglement Hamiltonian of quantum critical chains and conformal field theories</title><title>Physical review. B</title><description>We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW ansatz by both comparing the BW Rényi entropy to the exact results and investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including integrable models such as the transverse field Ising, three-state Potts and XXZ chains, and the nonintegrable bilinear-biquadratic model. We show that the Rényi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Rényi entropies also faithfully capture the corrections to the conformal field theory scaling associated with the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW ansatz also can be employed to predict properties of the eigenvectors of the reduced density matrices and is thus potentially applicable to other entanglement-related quantities such as negativity.</description><subject>Chains</subject><subject>Eigenvectors</subject><subject>Entanglement</subject><subject>Field theory</subject><subject>Flux density</subject><subject>Ising model</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Scaling</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWGp_gZuA66n5aDKTpZZqhYJFdD2k-bApM0mbZIT-e1Orrt7jcLmPdwC4xWiKMaL36-0xvZmvxylGhTCGCbkAIzLjohKCi8v_naFrMElphxDCHIkaiRFYL3yW_rMzvfEZLmXvuhy8kx4GCw-D9HnooYouOyU7qLbS-QSl11AFb0PsC7TOdBrmrQnRmXQDrqzskpn8zjH4eFq8z5fV6vX5Zf6wqhQVNFfMbiypLRZCK8O5llojq7hVqjwgpaGMEMWUbrhRprG1ajTfiIbLWmBKyIaOwd25dx_DYTApt7swRF9OtoRiJma0qXlJ0XNKxZBSNLbdR9fLeGwxak_22j97BRTyY49-A0lxZko</recordid><startdate>20191014</startdate><enddate>20191014</enddate><creator>Mendes-Santos, T.</creator><creator>Giudici, G.</creator><creator>Dalmonte, M.</creator><creator>Rajabpour, M. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191014</creationdate><title>Entanglement Hamiltonian of quantum critical chains and conformal field theories</title><author>Mendes-Santos, T. ; Giudici, G. ; Dalmonte, M. ; Rajabpour, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-5fbf27f199dce66dadd0fc6fcc551aae3522c5cd86ece8f7c8d6b986a791322b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chains</topic><topic>Eigenvectors</topic><topic>Entanglement</topic><topic>Field theory</topic><topic>Flux density</topic><topic>Ising model</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes-Santos, T.</creatorcontrib><creatorcontrib>Giudici, G.</creatorcontrib><creatorcontrib>Dalmonte, M.</creatorcontrib><creatorcontrib>Rajabpour, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes-Santos, T.</au><au>Giudici, G.</au><au>Dalmonte, M.</au><au>Rajabpour, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement Hamiltonian of quantum critical chains and conformal field theories</atitle><jtitle>Physical review. B</jtitle><date>2019-10-14</date><risdate>2019</risdate><volume>100</volume><issue>15</issue><artnum>155122</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW ansatz by both comparing the BW Rényi entropy to the exact results and investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including integrable models such as the transverse field Ising, three-state Potts and XXZ chains, and the nonintegrable bilinear-biquadratic model. We show that the Rényi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Rényi entropies also faithfully capture the corrections to the conformal field theory scaling associated with the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW ansatz also can be employed to predict properties of the eigenvectors of the reduced density matrices and is thus potentially applicable to other entanglement-related quantities such as negativity.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.155122</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-10, Vol.100 (15), Article 155122 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2315943876 |
source | American Physical Society Journals |
subjects | Chains Eigenvectors Entanglement Field theory Flux density Ising model Numerical methods Operators (mathematics) Scaling |
title | Entanglement Hamiltonian of quantum critical chains and conformal field theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20Hamiltonian%20of%20quantum%20critical%20chains%20and%20conformal%20field%20theories&rft.jtitle=Physical%20review.%20B&rft.au=Mendes-Santos,%20T.&rft.date=2019-10-14&rft.volume=100&rft.issue=15&rft.artnum=155122&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.155122&rft_dat=%3Cproquest_cross%3E2315943876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315943876&rft_id=info:pmid/&rfr_iscdi=true |