Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks

Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-11, Vol.9 (43), p.n/a
Hauptverfasser: Ma, Yuan, Ma, Yanjiao, Kim, Guk‐Tae, Diemant, Thomas, Behm, Rolf Jürgen, Geiger, Dorin, Kaiser, Ute, Varzi, Alberto, Passerini, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Advanced energy materials
container_volume 9
creator Ma, Yuan
Ma, Yanjiao
Kim, Guk‐Tae
Diemant, Thomas
Behm, Rolf Jürgen
Geiger, Dorin
Kaiser, Ute
Varzi, Alberto
Passerini, Stefano
description Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g−1 in the 300th cycle or 1500 mAh g−1 in the 120th cycle (at 200 mA g−1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes. The composite of α‐MnS and S‐doped carbon derived from Mn‐based metal organic frameworks enables outstanding lithium storage performance in half/full Li‐ion cells, benefiting from its structural and compositional features. The study of the lithium storage mechanism reveals that alongside the conversion reaction of α‐MnS, CuS, which is formed during the electrode coating on Cu foil, is also undergoing the conversion process.
doi_str_mv 10.1002/aenm.201902077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315934049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315934049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-7b5d79a2944b77a9951f632c954f255d08e8089eb4afb05742d6d9540b8cf8e13</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhSMEElXplrUl1in-jeNlFVpAasuisLacxAGXJg52oqo7jsBVuAiH4CS4KipLZjNvNN-bkV4UXSI4RhDia6WbeowhEhBDzk-iAUoQjZOUwtOjJvg8Gnm_hqGoQJCQQdSt-lY7Yx2Ym-7F9DVYddapZw0y1arCdDtgK_D1-f3-sWhWYKka2yrXmWKjPZjWuS5LXQLTgFUgbmwbhky53Daq0Lb3YKG9ba3by5lTtd5a9-ovorNKbbwe_fZh9DSbPmZ38fzh9j6bzOOCMM5jnrOSC4UFpTnnSgiGqoTgQjBaYcZKmOoUpkLnVFU5ZJziMinDEuZpUaUakWF0dbjbOvvWa9_Jte1dE15KTBAThIYcAjU-UIWz3jtdydaZWrmdRFDuw5X7cOUx3GAQB8PWbPTuH1pOpsvFn_cHCQaA4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315934049</pqid></control><display><type>article</type><title>Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Yuan ; Ma, Yanjiao ; Kim, Guk‐Tae ; Diemant, Thomas ; Behm, Rolf Jürgen ; Geiger, Dorin ; Kaiser, Ute ; Varzi, Alberto ; Passerini, Stefano</creator><creatorcontrib>Ma, Yuan ; Ma, Yanjiao ; Kim, Guk‐Tae ; Diemant, Thomas ; Behm, Rolf Jürgen ; Geiger, Dorin ; Kaiser, Ute ; Varzi, Alberto ; Passerini, Stefano</creatorcontrib><description>Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g−1 in the 300th cycle or 1500 mAh g−1 in the 120th cycle (at 200 mA g−1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes. The composite of α‐MnS and S‐doped carbon derived from Mn‐based metal organic frameworks enables outstanding lithium storage performance in half/full Li‐ion cells, benefiting from its structural and compositional features. The study of the lithium storage mechanism reveals that alongside the conversion reaction of α‐MnS, CuS, which is formed during the electrode coating on Cu foil, is also undergoing the conversion process.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201902077</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Composite structures ; Copper converters ; Copper sulfides ; Dilatometry ; Disks ; Electrodes ; in situ dilatometry ; in situ XRD/reaction mechanism ; Lithium ; lithium‐ion batteries ; Metal foils ; Metal-organic frameworks ; Nanoparticles ; Reaction mechanisms ; Storage capacity ; Sulfidation ; S‐doped carbonaceous frameworks ; α‐MnS nanoparticles</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (43), p.n/a</ispartof><rights>2019 Karlsruher Institut für Technologie. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-7b5d79a2944b77a9951f632c954f255d08e8089eb4afb05742d6d9540b8cf8e13</citedby><cites>FETCH-LOGICAL-c3577-7b5d79a2944b77a9951f632c954f255d08e8089eb4afb05742d6d9540b8cf8e13</cites><orcidid>0000-0002-6606-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201902077$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201902077$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Ma, Yanjiao</creatorcontrib><creatorcontrib>Kim, Guk‐Tae</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Behm, Rolf Jürgen</creatorcontrib><creatorcontrib>Geiger, Dorin</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Varzi, Alberto</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><title>Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks</title><title>Advanced energy materials</title><description>Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g−1 in the 300th cycle or 1500 mAh g−1 in the 120th cycle (at 200 mA g−1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes. The composite of α‐MnS and S‐doped carbon derived from Mn‐based metal organic frameworks enables outstanding lithium storage performance in half/full Li‐ion cells, benefiting from its structural and compositional features. The study of the lithium storage mechanism reveals that alongside the conversion reaction of α‐MnS, CuS, which is formed during the electrode coating on Cu foil, is also undergoing the conversion process.</description><subject>Composite structures</subject><subject>Copper converters</subject><subject>Copper sulfides</subject><subject>Dilatometry</subject><subject>Disks</subject><subject>Electrodes</subject><subject>in situ dilatometry</subject><subject>in situ XRD/reaction mechanism</subject><subject>Lithium</subject><subject>lithium‐ion batteries</subject><subject>Metal foils</subject><subject>Metal-organic frameworks</subject><subject>Nanoparticles</subject><subject>Reaction mechanisms</subject><subject>Storage capacity</subject><subject>Sulfidation</subject><subject>S‐doped carbonaceous frameworks</subject><subject>α‐MnS nanoparticles</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1OwzAQhSMEElXplrUl1in-jeNlFVpAasuisLacxAGXJg52oqo7jsBVuAiH4CS4KipLZjNvNN-bkV4UXSI4RhDia6WbeowhEhBDzk-iAUoQjZOUwtOjJvg8Gnm_hqGoQJCQQdSt-lY7Yx2Ym-7F9DVYddapZw0y1arCdDtgK_D1-f3-sWhWYKka2yrXmWKjPZjWuS5LXQLTgFUgbmwbhky53Daq0Lb3YKG9ba3by5lTtd5a9-ovorNKbbwe_fZh9DSbPmZ38fzh9j6bzOOCMM5jnrOSC4UFpTnnSgiGqoTgQjBaYcZKmOoUpkLnVFU5ZJziMinDEuZpUaUakWF0dbjbOvvWa9_Jte1dE15KTBAThIYcAjU-UIWz3jtdydaZWrmdRFDuw5X7cOUx3GAQB8PWbPTuH1pOpsvFn_cHCQaA4Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ma, Yuan</creator><creator>Ma, Yanjiao</creator><creator>Kim, Guk‐Tae</creator><creator>Diemant, Thomas</creator><creator>Behm, Rolf Jürgen</creator><creator>Geiger, Dorin</creator><creator>Kaiser, Ute</creator><creator>Varzi, Alberto</creator><creator>Passerini, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></search><sort><creationdate>20191101</creationdate><title>Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks</title><author>Ma, Yuan ; Ma, Yanjiao ; Kim, Guk‐Tae ; Diemant, Thomas ; Behm, Rolf Jürgen ; Geiger, Dorin ; Kaiser, Ute ; Varzi, Alberto ; Passerini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-7b5d79a2944b77a9951f632c954f255d08e8089eb4afb05742d6d9540b8cf8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Composite structures</topic><topic>Copper converters</topic><topic>Copper sulfides</topic><topic>Dilatometry</topic><topic>Disks</topic><topic>Electrodes</topic><topic>in situ dilatometry</topic><topic>in situ XRD/reaction mechanism</topic><topic>Lithium</topic><topic>lithium‐ion batteries</topic><topic>Metal foils</topic><topic>Metal-organic frameworks</topic><topic>Nanoparticles</topic><topic>Reaction mechanisms</topic><topic>Storage capacity</topic><topic>Sulfidation</topic><topic>S‐doped carbonaceous frameworks</topic><topic>α‐MnS nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Ma, Yanjiao</creatorcontrib><creatorcontrib>Kim, Guk‐Tae</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Behm, Rolf Jürgen</creatorcontrib><creatorcontrib>Geiger, Dorin</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Varzi, Alberto</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yuan</au><au>Ma, Yanjiao</au><au>Kim, Guk‐Tae</au><au>Diemant, Thomas</au><au>Behm, Rolf Jürgen</au><au>Geiger, Dorin</au><au>Kaiser, Ute</au><au>Varzi, Alberto</au><au>Passerini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>43</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g−1 in the 300th cycle or 1500 mAh g−1 in the 120th cycle (at 200 mA g−1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes. The composite of α‐MnS and S‐doped carbon derived from Mn‐based metal organic frameworks enables outstanding lithium storage performance in half/full Li‐ion cells, benefiting from its structural and compositional features. The study of the lithium storage mechanism reveals that alongside the conversion reaction of α‐MnS, CuS, which is formed during the electrode coating on Cu foil, is also undergoing the conversion process.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201902077</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-11, Vol.9 (43), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2315934049
source Wiley Online Library Journals Frontfile Complete
subjects Composite structures
Copper converters
Copper sulfides
Dilatometry
Disks
Electrodes
in situ dilatometry
in situ XRD/reaction mechanism
Lithium
lithium‐ion batteries
Metal foils
Metal-organic frameworks
Nanoparticles
Reaction mechanisms
Storage capacity
Sulfidation
S‐doped carbonaceous frameworks
α‐MnS nanoparticles
title Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Lithium%20Storage%20Capacity%20of%20%CE%B1%E2%80%90MnS%20Nanoparticles%20Embedded%20in%20S%E2%80%90Doped%20Carbonaceous%20Mesoporous%20Frameworks&rft.jtitle=Advanced%20energy%20materials&rft.au=Ma,%20Yuan&rft.date=2019-11-01&rft.volume=9&rft.issue=43&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201902077&rft_dat=%3Cproquest_cross%3E2315934049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315934049&rft_id=info:pmid/&rfr_iscdi=true