Using Mapping Languages for Building Legal Knowledge Graphs from XML Files

This paper presents our experience on building RDF knowledge graphs for an industrial use case in the legal domain. The information contained in legal information systems are often accessed through simple keyword interfaces and presented as a simple list of hits. In order to improve search accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
Hauptverfasser: Ademar Crotti Junior, Orlandi, Fabrizio, O'Sullivan, Declan, Dirschl, Christian, Reul, Quentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ademar Crotti Junior
Orlandi, Fabrizio
O'Sullivan, Declan
Dirschl, Christian
Reul, Quentin
description This paper presents our experience on building RDF knowledge graphs for an industrial use case in the legal domain. The information contained in legal information systems are often accessed through simple keyword interfaces and presented as a simple list of hits. In order to improve search accuracy one may avail of knowledge graphs, where the semantics of the data can be made explicit. Significant research effort has been invested in the area of building knowledge graphs from semi-structured text documents, such as XML, with the prevailing approach being the use of mapping languages. In this paper, we present a semantic model for representing legal documents together with an industrial use case. We also present a set of use case requirements based on the proposed semantic model, which are used to compare and discuss the use of state-of-the-art mapping languages for building knowledge graphs for legal data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2315669159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315669159</sourcerecordid><originalsourceid>FETCH-proquest_journals_23156691593</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_XOhZ0K1ZvhZZlL0V9CYDr0tZ29oa_X4WfUBPB845IxJRxrJktaB0QmLv-zRNab6knLOIHC6-0xJOwtoPK6FlEBI9tMbBOnSq-WqUQsFRm5fCRiLsnLC34XHmDtdTBWWn0M_IuBXKY_zjlMzL7XmzT6wzj4D-WfcmOD2kmrKM53mR8YL9d70BVmA7zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315669159</pqid></control><display><type>article</type><title>Using Mapping Languages for Building Legal Knowledge Graphs from XML Files</title><source>Free E- Journals</source><creator>Ademar Crotti Junior ; Orlandi, Fabrizio ; O'Sullivan, Declan ; Dirschl, Christian ; Reul, Quentin</creator><creatorcontrib>Ademar Crotti Junior ; Orlandi, Fabrizio ; O'Sullivan, Declan ; Dirschl, Christian ; Reul, Quentin</creatorcontrib><description>This paper presents our experience on building RDF knowledge graphs for an industrial use case in the legal domain. The information contained in legal information systems are often accessed through simple keyword interfaces and presented as a simple list of hits. In order to improve search accuracy one may avail of knowledge graphs, where the semantics of the data can be made explicit. Significant research effort has been invested in the area of building knowledge graphs from semi-structured text documents, such as XML, with the prevailing approach being the use of mapping languages. In this paper, we present a semantic model for representing legal documents together with an industrial use case. We also present a set of use case requirements based on the proposed semantic model, which are used to compare and discuss the use of state-of-the-art mapping languages for building knowledge graphs for legal data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs ; Industrial applications ; Languages ; Mapping ; Semantics ; Software upgrading</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ademar Crotti Junior</creatorcontrib><creatorcontrib>Orlandi, Fabrizio</creatorcontrib><creatorcontrib>O'Sullivan, Declan</creatorcontrib><creatorcontrib>Dirschl, Christian</creatorcontrib><creatorcontrib>Reul, Quentin</creatorcontrib><title>Using Mapping Languages for Building Legal Knowledge Graphs from XML Files</title><title>arXiv.org</title><description>This paper presents our experience on building RDF knowledge graphs for an industrial use case in the legal domain. The information contained in legal information systems are often accessed through simple keyword interfaces and presented as a simple list of hits. In order to improve search accuracy one may avail of knowledge graphs, where the semantics of the data can be made explicit. Significant research effort has been invested in the area of building knowledge graphs from semi-structured text documents, such as XML, with the prevailing approach being the use of mapping languages. In this paper, we present a semantic model for representing legal documents together with an industrial use case. We also present a set of use case requirements based on the proposed semantic model, which are used to compare and discuss the use of state-of-the-art mapping languages for building knowledge graphs for legal data.</description><subject>Graphs</subject><subject>Industrial applications</subject><subject>Languages</subject><subject>Mapping</subject><subject>Semantics</subject><subject>Software upgrading</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_XOhZ0K1ZvhZZlL0V9CYDr0tZ29oa_X4WfUBPB845IxJRxrJktaB0QmLv-zRNab6knLOIHC6-0xJOwtoPK6FlEBI9tMbBOnSq-WqUQsFRm5fCRiLsnLC34XHmDtdTBWWn0M_IuBXKY_zjlMzL7XmzT6wzj4D-WfcmOD2kmrKM53mR8YL9d70BVmA7zQ</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Ademar Crotti Junior</creator><creator>Orlandi, Fabrizio</creator><creator>O'Sullivan, Declan</creator><creator>Dirschl, Christian</creator><creator>Reul, Quentin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191118</creationdate><title>Using Mapping Languages for Building Legal Knowledge Graphs from XML Files</title><author>Ademar Crotti Junior ; Orlandi, Fabrizio ; O'Sullivan, Declan ; Dirschl, Christian ; Reul, Quentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23156691593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Graphs</topic><topic>Industrial applications</topic><topic>Languages</topic><topic>Mapping</topic><topic>Semantics</topic><topic>Software upgrading</topic><toplevel>online_resources</toplevel><creatorcontrib>Ademar Crotti Junior</creatorcontrib><creatorcontrib>Orlandi, Fabrizio</creatorcontrib><creatorcontrib>O'Sullivan, Declan</creatorcontrib><creatorcontrib>Dirschl, Christian</creatorcontrib><creatorcontrib>Reul, Quentin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ademar Crotti Junior</au><au>Orlandi, Fabrizio</au><au>O'Sullivan, Declan</au><au>Dirschl, Christian</au><au>Reul, Quentin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Using Mapping Languages for Building Legal Knowledge Graphs from XML Files</atitle><jtitle>arXiv.org</jtitle><date>2019-11-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper presents our experience on building RDF knowledge graphs for an industrial use case in the legal domain. The information contained in legal information systems are often accessed through simple keyword interfaces and presented as a simple list of hits. In order to improve search accuracy one may avail of knowledge graphs, where the semantics of the data can be made explicit. Significant research effort has been invested in the area of building knowledge graphs from semi-structured text documents, such as XML, with the prevailing approach being the use of mapping languages. In this paper, we present a semantic model for representing legal documents together with an industrial use case. We also present a set of use case requirements based on the proposed semantic model, which are used to compare and discuss the use of state-of-the-art mapping languages for building knowledge graphs for legal data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2315669159
source Free E- Journals
subjects Graphs
Industrial applications
Languages
Mapping
Semantics
Software upgrading
title Using Mapping Languages for Building Legal Knowledge Graphs from XML Files
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Using%20Mapping%20Languages%20for%20Building%20Legal%20Knowledge%20Graphs%20from%20XML%20Files&rft.jtitle=arXiv.org&rft.au=Ademar%20Crotti%20Junior&rft.date=2019-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2315669159%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315669159&rft_id=info:pmid/&rfr_iscdi=true