RSM-GAN: A Convolutional Recurrent GAN for Anomaly Detection in Contaminated Seasonal Multivariate Time Series
Robust anomaly detection is a requirement for monitoring complex modern systems with applications such as cyber-security, fraud prevention, and maintenance. These systems generate multiple correlated time series that are highly seasonal and noisy. This paper presents a novel unsupervised deep learni...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!