Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations
A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsib...
Gespeichert in:
Veröffentlicht in: | Chemical engineering & technology 2019-12, Vol.42 (12), p.2556-2564 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2564 |
---|---|
container_issue | 12 |
container_start_page | 2556 |
container_title | Chemical engineering & technology |
container_volume | 42 |
creator | Varela, Luis González Bermúdez, Cesar Álvarez Chapela, Sergio Porteiro, Jacobo Tabarés, José L. Míguez |
description | A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant.
Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent. |
doi_str_mv | 10.1002/ceat.201800674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315575353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315575353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFavnhc8p85-ZZNjG60WKgrWoyy7yUa35KNmk0r-exMrevQ0DO_3hnkPoUsCMwJAr1Or2xkFEgGEkh-hCRGUBJxQcYwmEDMIpCDhKTrzfgsAZFgm6HVV7pp676o3vLAZfqj3trRVi5_ee-9Sj12FF64utfc4qctd1-rW1ZUu8LLoXIZv-kqXIzeIpvOjhp9d2RXfmD9HJ7kuvL34mVP0srzdJPfB-vFulczXQcoE5wE1EBtDCIRUMwhJJMOIWy0liyITR2kmDDCbW06lEYJm1mSa8Tw0EZd5KoFN0dXh7pDlo7O-Vdu6a4Y3vaKMCCEFE2ygZgcqbWrvG5urXeNK3fSKgBorVGOF6rfCwRAfDJ-usP0_tEpu55s_7xd75nXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315575353</pqid></control><display><type>article</type><title>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</title><source>Wiley Journals</source><creator>Varela, Luis González ; Bermúdez, Cesar Álvarez ; Chapela, Sergio ; Porteiro, Jacobo ; Tabarés, José L. Míguez</creator><creatorcontrib>Varela, Luis González ; Bermúdez, Cesar Álvarez ; Chapela, Sergio ; Porteiro, Jacobo ; Tabarés, José L. Míguez</creatorcontrib><description>A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant.
Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201800674</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Angle of repose ; Bed physics ; Biomass ; Biomass burning ; Boilers ; CAD ; Combustion ; Computational fluid dynamics ; Computer aided design ; Computer simulation ; Finite element method ; Gravitational collapse ; Memory management ; Porous beds</subject><ispartof>Chemical engineering & technology, 2019-12, Vol.42 (12), p.2556-2564</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</citedby><cites>FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201800674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201800674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Varela, Luis González</creatorcontrib><creatorcontrib>Bermúdez, Cesar Álvarez</creatorcontrib><creatorcontrib>Chapela, Sergio</creatorcontrib><creatorcontrib>Porteiro, Jacobo</creatorcontrib><creatorcontrib>Tabarés, José L. Míguez</creatorcontrib><title>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</title><title>Chemical engineering & technology</title><description>A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant.
Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.</description><subject>Algorithms</subject><subject>Angle of repose</subject><subject>Bed physics</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Boilers</subject><subject>CAD</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Gravitational collapse</subject><subject>Memory management</subject><subject>Porous beds</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFavnhc8p85-ZZNjG60WKgrWoyy7yUa35KNmk0r-exMrevQ0DO_3hnkPoUsCMwJAr1Or2xkFEgGEkh-hCRGUBJxQcYwmEDMIpCDhKTrzfgsAZFgm6HVV7pp676o3vLAZfqj3trRVi5_ee-9Sj12FF64utfc4qctd1-rW1ZUu8LLoXIZv-kqXIzeIpvOjhp9d2RXfmD9HJ7kuvL34mVP0srzdJPfB-vFulczXQcoE5wE1EBtDCIRUMwhJJMOIWy0liyITR2kmDDCbW06lEYJm1mSa8Tw0EZd5KoFN0dXh7pDlo7O-Vdu6a4Y3vaKMCCEFE2ygZgcqbWrvG5urXeNK3fSKgBorVGOF6rfCwRAfDJ-usP0_tEpu55s_7xd75nXK</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Varela, Luis González</creator><creator>Bermúdez, Cesar Álvarez</creator><creator>Chapela, Sergio</creator><creator>Porteiro, Jacobo</creator><creator>Tabarés, José L. Míguez</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201912</creationdate><title>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</title><author>Varela, Luis González ; Bermúdez, Cesar Álvarez ; Chapela, Sergio ; Porteiro, Jacobo ; Tabarés, José L. Míguez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angle of repose</topic><topic>Bed physics</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Boilers</topic><topic>CAD</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Gravitational collapse</topic><topic>Memory management</topic><topic>Porous beds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varela, Luis González</creatorcontrib><creatorcontrib>Bermúdez, Cesar Álvarez</creatorcontrib><creatorcontrib>Chapela, Sergio</creatorcontrib><creatorcontrib>Porteiro, Jacobo</creatorcontrib><creatorcontrib>Tabarés, José L. Míguez</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varela, Luis González</au><au>Bermúdez, Cesar Álvarez</au><au>Chapela, Sergio</au><au>Porteiro, Jacobo</au><au>Tabarés, José L. Míguez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</atitle><jtitle>Chemical engineering & technology</jtitle><date>2019-12</date><risdate>2019</risdate><volume>42</volume><issue>12</issue><spage>2556</spage><epage>2564</epage><pages>2556-2564</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant.
Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201800674</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 2019-12, Vol.42 (12), p.2556-2564 |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_journals_2315575353 |
source | Wiley Journals |
subjects | Algorithms Angle of repose Bed physics Biomass Biomass burning Boilers CAD Combustion Computational fluid dynamics Computer aided design Computer simulation Finite element method Gravitational collapse Memory management Porous beds |
title | Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Bed%20Movement%20Physics%20in%20Biomass%20Computational%20Fluid%20Dynamics%20Combustion%20Simulations&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Varela,%20Luis%20Gonz%C3%A1lez&rft.date=2019-12&rft.volume=42&rft.issue=12&rft.spage=2556&rft.epage=2564&rft.pages=2556-2564&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201800674&rft_dat=%3Cproquest_cross%3E2315575353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315575353&rft_id=info:pmid/&rfr_iscdi=true |