Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations

A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2019-12, Vol.42 (12), p.2556-2564
Hauptverfasser: Varela, Luis González, Bermúdez, Cesar Álvarez, Chapela, Sergio, Porteiro, Jacobo, Tabarés, José L. Míguez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2564
container_issue 12
container_start_page 2556
container_title Chemical engineering & technology
container_volume 42
creator Varela, Luis González
Bermúdez, Cesar Álvarez
Chapela, Sergio
Porteiro, Jacobo
Tabarés, José L. Míguez
description A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant. Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.
doi_str_mv 10.1002/ceat.201800674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315575353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315575353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFavnhc8p85-ZZNjG60WKgrWoyy7yUa35KNmk0r-exMrevQ0DO_3hnkPoUsCMwJAr1Or2xkFEgGEkh-hCRGUBJxQcYwmEDMIpCDhKTrzfgsAZFgm6HVV7pp676o3vLAZfqj3trRVi5_ee-9Sj12FF64utfc4qctd1-rW1ZUu8LLoXIZv-kqXIzeIpvOjhp9d2RXfmD9HJ7kuvL34mVP0srzdJPfB-vFulczXQcoE5wE1EBtDCIRUMwhJJMOIWy0liyITR2kmDDCbW06lEYJm1mSa8Tw0EZd5KoFN0dXh7pDlo7O-Vdu6a4Y3vaKMCCEFE2ygZgcqbWrvG5urXeNK3fSKgBorVGOF6rfCwRAfDJ-usP0_tEpu55s_7xd75nXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315575353</pqid></control><display><type>article</type><title>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</title><source>Wiley Journals</source><creator>Varela, Luis González ; Bermúdez, Cesar Álvarez ; Chapela, Sergio ; Porteiro, Jacobo ; Tabarés, José L. Míguez</creator><creatorcontrib>Varela, Luis González ; Bermúdez, Cesar Álvarez ; Chapela, Sergio ; Porteiro, Jacobo ; Tabarés, José L. Míguez</creatorcontrib><description>A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant. Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201800674</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Angle of repose ; Bed physics ; Biomass ; Biomass burning ; Boilers ; CAD ; Combustion ; Computational fluid dynamics ; Computer aided design ; Computer simulation ; Finite element method ; Gravitational collapse ; Memory management ; Porous beds</subject><ispartof>Chemical engineering &amp; technology, 2019-12, Vol.42 (12), p.2556-2564</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</citedby><cites>FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201800674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201800674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Varela, Luis González</creatorcontrib><creatorcontrib>Bermúdez, Cesar Álvarez</creatorcontrib><creatorcontrib>Chapela, Sergio</creatorcontrib><creatorcontrib>Porteiro, Jacobo</creatorcontrib><creatorcontrib>Tabarés, José L. Míguez</creatorcontrib><title>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</title><title>Chemical engineering &amp; technology</title><description>A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant. Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.</description><subject>Algorithms</subject><subject>Angle of repose</subject><subject>Bed physics</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Boilers</subject><subject>CAD</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Gravitational collapse</subject><subject>Memory management</subject><subject>Porous beds</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFavnhc8p85-ZZNjG60WKgrWoyy7yUa35KNmk0r-exMrevQ0DO_3hnkPoUsCMwJAr1Or2xkFEgGEkh-hCRGUBJxQcYwmEDMIpCDhKTrzfgsAZFgm6HVV7pp676o3vLAZfqj3trRVi5_ee-9Sj12FF64utfc4qctd1-rW1ZUu8LLoXIZv-kqXIzeIpvOjhp9d2RXfmD9HJ7kuvL34mVP0srzdJPfB-vFulczXQcoE5wE1EBtDCIRUMwhJJMOIWy0liyITR2kmDDCbW06lEYJm1mSa8Tw0EZd5KoFN0dXh7pDlo7O-Vdu6a4Y3vaKMCCEFE2ygZgcqbWrvG5urXeNK3fSKgBorVGOF6rfCwRAfDJ-usP0_tEpu55s_7xd75nXK</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Varela, Luis González</creator><creator>Bermúdez, Cesar Álvarez</creator><creator>Chapela, Sergio</creator><creator>Porteiro, Jacobo</creator><creator>Tabarés, José L. Míguez</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201912</creationdate><title>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</title><author>Varela, Luis González ; Bermúdez, Cesar Álvarez ; Chapela, Sergio ; Porteiro, Jacobo ; Tabarés, José L. Míguez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-2b09bb11062a306187684ea77388b98cd5b03efe427b552debda34f6b847fc703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angle of repose</topic><topic>Bed physics</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Boilers</topic><topic>CAD</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Gravitational collapse</topic><topic>Memory management</topic><topic>Porous beds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varela, Luis González</creatorcontrib><creatorcontrib>Bermúdez, Cesar Álvarez</creatorcontrib><creatorcontrib>Chapela, Sergio</creatorcontrib><creatorcontrib>Porteiro, Jacobo</creatorcontrib><creatorcontrib>Tabarés, José L. Míguez</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varela, Luis González</au><au>Bermúdez, Cesar Álvarez</au><au>Chapela, Sergio</au><au>Porteiro, Jacobo</au><au>Tabarés, José L. Míguez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2019-12</date><risdate>2019</risdate><volume>42</volume><issue>12</issue><spage>2556</spage><epage>2564</epage><pages>2556-2564</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>A detailed description of the first functional new approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. In particular, the analysis of the context of the collapse due to gravitational forces, the design of an automated algorithm that is responsible for its simulation under ANSYS‐Fluent, the concrete implementation of this algorithm, and its test with experimental contrasted data are described. The proposed solution can replicate the angle of repose of different fuels in biomass combustion boilers by implementing a series of geometric mechanisms applied to the mesh. The selected approach mainly responds to a computational efficiency requirement; both memory management and execution speed are relevant. Functional logic and solution implementation results for an existing problem in the computational fluid dynamics simulation of the biomass combustion process are described. An approach to simulate the bed physics in biomass boilers in a Eulerian mathematical framework is presented. The implemented algorithm is compatible with both the developed model and commercial software ANSYS‐Fluent.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201800674</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2019-12, Vol.42 (12), p.2556-2564
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_journals_2315575353
source Wiley Journals
subjects Algorithms
Angle of repose
Bed physics
Biomass
Biomass burning
Boilers
CAD
Combustion
Computational fluid dynamics
Computer aided design
Computer simulation
Finite element method
Gravitational collapse
Memory management
Porous beds
title Improving Bed Movement Physics in Biomass Computational Fluid Dynamics Combustion Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Bed%20Movement%20Physics%20in%20Biomass%20Computational%20Fluid%20Dynamics%20Combustion%20Simulations&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Varela,%20Luis%20Gonz%C3%A1lez&rft.date=2019-12&rft.volume=42&rft.issue=12&rft.spage=2556&rft.epage=2564&rft.pages=2556-2564&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201800674&rft_dat=%3Cproquest_cross%3E2315575353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315575353&rft_id=info:pmid/&rfr_iscdi=true