Design of an optimized fractional high-order differential feedback controller for an AVR system
This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) a...
Gespeichert in:
Veröffentlicht in: | Electrical engineering 2019-12, Vol.101 (4), p.1221-1233 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1233 |
---|---|
container_issue | 4 |
container_start_page | 1221 |
container_title | Electrical engineering |
container_volume | 101 |
creator | Ayas, Mustafa Sinasi |
description | This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics. |
doi_str_mv | 10.1007/s00202-019-00842-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315544665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315544665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c80737f8b28499358022feacdfae21d6efe7dac44644ba5a86b48b80fc178ee53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm93NHkv9hIIg6jVks5M2td3UZHuov96sK3jzMgPD87wMLyGXDK4ZQHUTAThwCqymAFJwWhyRCRN5OglZHZMJ1ELSqubslJzFuAaAvKjFhKhbjG7ZZd5mOs1d77buC9vMBm165zu9yVZuuaI-tBiy1lmLAbvepbtFbBttPjLjuz74zSYB1ochZ_b-ksVD7HF7Tk6s3kS8-N1T8nZ_9zp_pIvnh6f5bEFNzuqeGglVXlnZcCnqOi8kcG5Rm9Zq5Kwt0WLVaiNEKUSjCy3LRshGgjWskohFPiVXY-4u-M89xl6t_T6k96PiOSuKZJYDxUfKBB9jQKt2wW11OCgGaihSjUWqVKT6KVINUj5KMcHdEsNf9D_WN1NIdt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315544665</pqid></control><display><type>article</type><title>Design of an optimized fractional high-order differential feedback controller for an AVR system</title><source>Springer Nature - Complete Springer Journals</source><creator>Ayas, Mustafa Sinasi</creator><creatorcontrib>Ayas, Mustafa Sinasi</creatorcontrib><description>This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-019-00842-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Control systems design ; Design optimization ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Feedback control ; Original Paper ; Particle swarm optimization ; Power Electronics ; Process controls ; Proportional integral derivative</subject><ispartof>Electrical engineering, 2019-12, Vol.101 (4), p.1221-1233</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c80737f8b28499358022feacdfae21d6efe7dac44644ba5a86b48b80fc178ee53</citedby><cites>FETCH-LOGICAL-c319t-c80737f8b28499358022feacdfae21d6efe7dac44644ba5a86b48b80fc178ee53</cites><orcidid>0000-0001-8113-4817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-019-00842-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-019-00842-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ayas, Mustafa Sinasi</creatorcontrib><title>Design of an optimized fractional high-order differential feedback controller for an AVR system</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics.</description><subject>Algorithms</subject><subject>Control systems design</subject><subject>Design optimization</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Original Paper</subject><subject>Particle swarm optimization</subject><subject>Power Electronics</subject><subject>Process controls</subject><subject>Proportional integral derivative</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm93NHkv9hIIg6jVks5M2td3UZHuov96sK3jzMgPD87wMLyGXDK4ZQHUTAThwCqymAFJwWhyRCRN5OglZHZMJ1ELSqubslJzFuAaAvKjFhKhbjG7ZZd5mOs1d77buC9vMBm165zu9yVZuuaI-tBiy1lmLAbvepbtFbBttPjLjuz74zSYB1ochZ_b-ksVD7HF7Tk6s3kS8-N1T8nZ_9zp_pIvnh6f5bEFNzuqeGglVXlnZcCnqOi8kcG5Rm9Zq5Kwt0WLVaiNEKUSjCy3LRshGgjWskohFPiVXY-4u-M89xl6t_T6k96PiOSuKZJYDxUfKBB9jQKt2wW11OCgGaihSjUWqVKT6KVINUj5KMcHdEsNf9D_WN1NIdt0</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ayas, Mustafa Sinasi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8113-4817</orcidid></search><sort><creationdate>20191201</creationdate><title>Design of an optimized fractional high-order differential feedback controller for an AVR system</title><author>Ayas, Mustafa Sinasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c80737f8b28499358022feacdfae21d6efe7dac44644ba5a86b48b80fc178ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Control systems design</topic><topic>Design optimization</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Original Paper</topic><topic>Particle swarm optimization</topic><topic>Power Electronics</topic><topic>Process controls</topic><topic>Proportional integral derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayas, Mustafa Sinasi</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayas, Mustafa Sinasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an optimized fractional high-order differential feedback controller for an AVR system</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>101</volume><issue>4</issue><spage>1221</spage><epage>1233</epage><pages>1221-1233</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-019-00842-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8113-4817</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-7921 |
ispartof | Electrical engineering, 2019-12, Vol.101 (4), p.1221-1233 |
issn | 0948-7921 1432-0487 |
language | eng |
recordid | cdi_proquest_journals_2315544665 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Control systems design Design optimization Economics and Management Electrical Engineering Electrical Machines and Networks Energy Policy Engineering Feedback control Original Paper Particle swarm optimization Power Electronics Process controls Proportional integral derivative |
title | Design of an optimized fractional high-order differential feedback controller for an AVR system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20optimized%20fractional%20high-order%20differential%20feedback%20controller%20for%20an%20AVR%20system&rft.jtitle=Electrical%20engineering&rft.au=Ayas,%20Mustafa%20Sinasi&rft.date=2019-12-01&rft.volume=101&rft.issue=4&rft.spage=1221&rft.epage=1233&rft.pages=1221-1233&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-019-00842-5&rft_dat=%3Cproquest_cross%3E2315544665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315544665&rft_id=info:pmid/&rfr_iscdi=true |