Spin Systems on Bethe Lattices

In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called the cavity method for studying spin systems on the Bethe lattice, i.e., the random d -regular graph Mézard and Parisi (Eur Phys J B 20:217–233, 2001 ). Their technique was based on certain hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-12, Vol.372 (2), p.441-523
Hauptverfasser: Coja-Oghlan, Amin, Perkins, Will
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 2
container_start_page 441
container_title Communications in mathematical physics
container_volume 372
creator Coja-Oghlan, Amin
Perkins, Will
description In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called the cavity method for studying spin systems on the Bethe lattice, i.e., the random d -regular graph Mézard and Parisi (Eur Phys J B 20:217–233, 2001 ). Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula for the free energy. The general results have interesting ramifications on several special cases.
doi_str_mv 10.1007/s00220-019-03544-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315543766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315543766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-362063344211f028c09a92b7bbc0524589559325ae2ed5419cbdc73ba42c88b03</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-ARdScB299-bRZqmDLyi4GF2HNJNqB6etSWfRf2-1gjtXd3O-c-Ewdo5whQD5dQIgAg5oOAglJR8P2AKlIA4G9SFbACBwoVEfs5OUtgBgSOsFu1j3TZutxzSEXcq6NrsNw3vISjcMjQ_plB3V7iOFs9-7ZK_3dy-rR14-PzytbkruBZphEhNoIaQkxBqo8GCcoSqvKg-KpCqMUkaQcoHCRkk0vtr4XFROki-KCsSSXc7ePnaf-5AGu-32sZ1eWhKolBS51hNFM-Vjl1IMte1js3NxtAj2u4OdO9ipg_3pYMdpJOZRmuD2LcQ_9T-rL2hrXWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315543766</pqid></control><display><type>article</type><title>Spin Systems on Bethe Lattices</title><source>SpringerLink Journals</source><creator>Coja-Oghlan, Amin ; Perkins, Will</creator><creatorcontrib>Coja-Oghlan, Amin ; Perkins, Will</creatorcontrib><description>In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called the cavity method for studying spin systems on the Bethe lattice, i.e., the random d -regular graph Mézard and Parisi (Eur Phys J B 20:217–233, 2001 ). Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula for the free energy. The general results have interesting ramifications on several special cases.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03544-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Decomposition ; Free energy ; Lattices ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-12, Vol.372 (2), p.441-523</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-362063344211f028c09a92b7bbc0524589559325ae2ed5419cbdc73ba42c88b03</citedby><cites>FETCH-LOGICAL-c319t-362063344211f028c09a92b7bbc0524589559325ae2ed5419cbdc73ba42c88b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03544-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03544-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Coja-Oghlan, Amin</creatorcontrib><creatorcontrib>Perkins, Will</creatorcontrib><title>Spin Systems on Bethe Lattices</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called the cavity method for studying spin systems on the Bethe lattice, i.e., the random d -regular graph Mézard and Parisi (Eur Phys J B 20:217–233, 2001 ). Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula for the free energy. The general results have interesting ramifications on several special cases.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Decomposition</subject><subject>Free energy</subject><subject>Lattices</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-ARdScB299-bRZqmDLyi4GF2HNJNqB6etSWfRf2-1gjtXd3O-c-Ewdo5whQD5dQIgAg5oOAglJR8P2AKlIA4G9SFbACBwoVEfs5OUtgBgSOsFu1j3TZutxzSEXcq6NrsNw3vISjcMjQ_plB3V7iOFs9-7ZK_3dy-rR14-PzytbkruBZphEhNoIaQkxBqo8GCcoSqvKg-KpCqMUkaQcoHCRkk0vtr4XFROki-KCsSSXc7ePnaf-5AGu-32sZ1eWhKolBS51hNFM-Vjl1IMte1js3NxtAj2u4OdO9ipg_3pYMdpJOZRmuD2LcQ_9T-rL2hrXWc</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Coja-Oghlan, Amin</creator><creator>Perkins, Will</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Spin Systems on Bethe Lattices</title><author>Coja-Oghlan, Amin ; Perkins, Will</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-362063344211f028c09a92b7bbc0524589559325ae2ed5419cbdc73ba42c88b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Decomposition</topic><topic>Free energy</topic><topic>Lattices</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coja-Oghlan, Amin</creatorcontrib><creatorcontrib>Perkins, Will</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coja-Oghlan, Amin</au><au>Perkins, Will</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Systems on Bethe Lattices</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>372</volume><issue>2</issue><spage>441</spage><epage>523</epage><pages>441-523</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In an extremely influential paper Mézard and Parisi put forward an analytic but non-rigorous approach called the cavity method for studying spin systems on the Bethe lattice, i.e., the random d -regular graph Mézard and Parisi (Eur Phys J B 20:217–233, 2001 ). Their technique was based on certain hypotheses; most importantly, that the phase space decomposes into a number of Bethe states that are free from long-range correlations and whose marginals are given by a recurrence called Belief Propagation. In this paper we establish this decomposition rigorously for a very general family of spin systems. In addition, we show that the free energy can be computed from this decomposition. We also derive a variational formula for the free energy. The general results have interesting ramifications on several special cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03544-y</doi><tpages>83</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-12, Vol.372 (2), p.441-523
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2315543766
source SpringerLink Journals
subjects Classical and Quantum Gravitation
Complex Systems
Decomposition
Free energy
Lattices
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Spin Systems on Bethe Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Systems%20on%20Bethe%20Lattices&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Coja-Oghlan,%20Amin&rft.date=2019-12-01&rft.volume=372&rft.issue=2&rft.spage=441&rft.epage=523&rft.pages=441-523&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03544-y&rft_dat=%3Cproquest_cross%3E2315543766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315543766&rft_id=info:pmid/&rfr_iscdi=true