General Genus Zhu Recursion for Vertex Operator Algebras
We describe Zhu recursion for a vertex operator algebra (VOA) on a general genus Riemann surface in the Schottky uniformization where \(n\)-point correlation functions are written as linear combinations of \((n-1)\)-point functions with universal coefficients. These coefficients are identified with...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tuite, Michael P Welby, Michael |
description | We describe Zhu recursion for a vertex operator algebra (VOA) on a general genus Riemann surface in the Schottky uniformization where \(n\)-point correlation functions are written as linear combinations of \((n-1)\)-point functions with universal coefficients. These coefficients are identified with specific geometric structures on the Riemann surface. We apply Zhu recursion to the Heisenberg VOA and determine all its correlation functions. For a general VOA, Zhu recursion with respect to the Virasoro vector is shown to lead to conformal Ward identities expressed in terms of derivatives with respect to the surface moduli. We derive linear partial differential equations for the Heisenberg VOA partition function and various structures such as the bidifferential of the second kind, holomorphic 1-forms and the period matrix. We also compute the genus \(g\) partition function for an even lattice VOA. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2315363747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315363747</sourcerecordid><originalsourceid>FETCH-proquest_journals_23153637473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcE_NSy1KzFEA0qXFClEZpQpBqcmlRcWZ-XkKaflFCmGpRSWpFQr-BUBVJUC-Y056alJRYjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbGRuaGpsZm5uYGxOnCgAhOzXS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315363747</pqid></control><display><type>article</type><title>General Genus Zhu Recursion for Vertex Operator Algebras</title><source>Free E- Journals</source><creator>Tuite, Michael P ; Welby, Michael</creator><creatorcontrib>Tuite, Michael P ; Welby, Michael</creatorcontrib><description>We describe Zhu recursion for a vertex operator algebra (VOA) on a general genus Riemann surface in the Schottky uniformization where \(n\)-point correlation functions are written as linear combinations of \((n-1)\)-point functions with universal coefficients. These coefficients are identified with specific geometric structures on the Riemann surface. We apply Zhu recursion to the Heisenberg VOA and determine all its correlation functions. For a general VOA, Zhu recursion with respect to the Virasoro vector is shown to lead to conformal Ward identities expressed in terms of derivatives with respect to the surface moduli. We derive linear partial differential equations for the Heisenberg VOA partition function and various structures such as the bidifferential of the second kind, holomorphic 1-forms and the period matrix. We also compute the genus \(g\) partition function for an even lattice VOA.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Identities ; Mathematical analysis ; Operators (mathematics) ; Partial differential equations ; Partitions ; Partitions (mathematics) ; Riemann surfaces</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tuite, Michael P</creatorcontrib><creatorcontrib>Welby, Michael</creatorcontrib><title>General Genus Zhu Recursion for Vertex Operator Algebras</title><title>arXiv.org</title><description>We describe Zhu recursion for a vertex operator algebra (VOA) on a general genus Riemann surface in the Schottky uniformization where \(n\)-point correlation functions are written as linear combinations of \((n-1)\)-point functions with universal coefficients. These coefficients are identified with specific geometric structures on the Riemann surface. We apply Zhu recursion to the Heisenberg VOA and determine all its correlation functions. For a general VOA, Zhu recursion with respect to the Virasoro vector is shown to lead to conformal Ward identities expressed in terms of derivatives with respect to the surface moduli. We derive linear partial differential equations for the Heisenberg VOA partition function and various structures such as the bidifferential of the second kind, holomorphic 1-forms and the period matrix. We also compute the genus \(g\) partition function for an even lattice VOA.</description><subject>Identities</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Partitions</subject><subject>Partitions (mathematics)</subject><subject>Riemann surfaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcE_NSy1KzFEA0qXFClEZpQpBqcmlRcWZ-XkKaflFCmGpRSWpFQr-BUBVJUC-Y056alJRYjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbGRuaGpsZm5uYGxOnCgAhOzXS</recordid><startdate>20191218</startdate><enddate>20191218</enddate><creator>Tuite, Michael P</creator><creator>Welby, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191218</creationdate><title>General Genus Zhu Recursion for Vertex Operator Algebras</title><author>Tuite, Michael P ; Welby, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23153637473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Identities</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Partitions</topic><topic>Partitions (mathematics)</topic><topic>Riemann surfaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Tuite, Michael P</creatorcontrib><creatorcontrib>Welby, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuite, Michael P</au><au>Welby, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>General Genus Zhu Recursion for Vertex Operator Algebras</atitle><jtitle>arXiv.org</jtitle><date>2019-12-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We describe Zhu recursion for a vertex operator algebra (VOA) on a general genus Riemann surface in the Schottky uniformization where \(n\)-point correlation functions are written as linear combinations of \((n-1)\)-point functions with universal coefficients. These coefficients are identified with specific geometric structures on the Riemann surface. We apply Zhu recursion to the Heisenberg VOA and determine all its correlation functions. For a general VOA, Zhu recursion with respect to the Virasoro vector is shown to lead to conformal Ward identities expressed in terms of derivatives with respect to the surface moduli. We derive linear partial differential equations for the Heisenberg VOA partition function and various structures such as the bidifferential of the second kind, holomorphic 1-forms and the period matrix. We also compute the genus \(g\) partition function for an even lattice VOA.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2315363747 |
source | Free E- Journals |
subjects | Identities Mathematical analysis Operators (mathematics) Partial differential equations Partitions Partitions (mathematics) Riemann surfaces |
title | General Genus Zhu Recursion for Vertex Operator Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=General%20Genus%20Zhu%20Recursion%20for%20Vertex%20Operator%20Algebras&rft.jtitle=arXiv.org&rft.au=Tuite,%20Michael%20P&rft.date=2019-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2315363747%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315363747&rft_id=info:pmid/&rfr_iscdi=true |