Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility

The application of functional graphenic materials (FGMs) in medicine has been limited due to insufficient knowledge of long–term degradation and cytocompatibility. Degradation studies that match the timeframe of clinical treatments are difficult to perform due to the limited timeframe in which in vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-12, Vol.154, p.342-349
Hauptverfasser: Arnold, Anne M., Holt, Brian D., Tang, Caoxin, Sydlik, Stefanie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue
container_start_page 342
container_title Carbon (New York)
container_volume 154
creator Arnold, Anne M.
Holt, Brian D.
Tang, Caoxin
Sydlik, Stefanie A.
description The application of functional graphenic materials (FGMs) in medicine has been limited due to insufficient knowledge of long–term degradation and cytocompatibility. Degradation studies that match the timeframe of clinical treatments are difficult to perform due to the limited timeframe in which in vitro studies can be conducted and the short lifespan of in vivo animal models. Here, we have designed an ex vivo experimental approach, where the degradation of FGMs can be monitored indefinitely and sampled at any point during the degradation process. We used this approach to study the aqueous and enzymatic degradation of phosphate graphenes (PGs), which are promising materials for biodegradable bone implants. We found that PGs chemically degrade through cation elution and basal plane scission of polyphosphates, and degradation timeframes are dependent on cation identity. Further, PGs also undergo physical degradation indicated by reduction of particle size. The pathways and timeframes of physical degradation of PGs are different for aqueous and enzymatic conditions. PG degradation was related to structure, which according to kinetic studies of the synthesis, could be manipulated to tune degradation. Nevertheless, all PGs and the resulting degradation byproducts are cytocompatible, opening the door for long–term biomedical applications, such as synthetic bone graft implants. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315053641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319308024</els_id><sourcerecordid>2315053641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-153a898a612935404f0beab6f5b615007de76a9d8da2ab60d5f5653ba6773c313</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gYuC69akadLUhSCDfzCgoK5DmtzOpEybmmbE2fkOvqFPYoa6dnW5h3PO5X4InROcEUz4ZZtp5WvXZzkmVYZFhjE7QDMiSppSUZFDNMMYi5TnOT1GJ-PYxrUQpJihl-e1G4e1CpB0ztjGgklWXg1r6CFxn9bAVbJ0_ern6zuA75LaOgPRYFSwrk9UbxK9C067bohKbTc27E7RUaM2I5z9zTl6u7t9XTyky6f7x8XNMtW0JCEljCpRCcVJXlFW4KLBNaiaN6zmhGFcGii5qowwKo8yNqxhnNFa8bKkmhI6RxdT7-Dd-xbGIFu39X08KXMaGxjlxd5VTC7t3Th6aOTgbaf8ThIs9_hkKyd8co9PYiEjvhi7nmIQP_iw4OWoLfQajPWggzTO_l_wC02Ge_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315053641</pqid></control><display><type>article</type><title>Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility</title><source>Elsevier ScienceDirect Journals</source><creator>Arnold, Anne M. ; Holt, Brian D. ; Tang, Caoxin ; Sydlik, Stefanie A.</creator><creatorcontrib>Arnold, Anne M. ; Holt, Brian D. ; Tang, Caoxin ; Sydlik, Stefanie A.</creatorcontrib><description>The application of functional graphenic materials (FGMs) in medicine has been limited due to insufficient knowledge of long–term degradation and cytocompatibility. Degradation studies that match the timeframe of clinical treatments are difficult to perform due to the limited timeframe in which in vitro studies can be conducted and the short lifespan of in vivo animal models. Here, we have designed an ex vivo experimental approach, where the degradation of FGMs can be monitored indefinitely and sampled at any point during the degradation process. We used this approach to study the aqueous and enzymatic degradation of phosphate graphenes (PGs), which are promising materials for biodegradable bone implants. We found that PGs chemically degrade through cation elution and basal plane scission of polyphosphates, and degradation timeframes are dependent on cation identity. Further, PGs also undergo physical degradation indicated by reduction of particle size. The pathways and timeframes of physical degradation of PGs are different for aqueous and enzymatic conditions. PG degradation was related to structure, which according to kinetic studies of the synthesis, could be manipulated to tune degradation. Nevertheless, all PGs and the resulting degradation byproducts are cytocompatible, opening the door for long–term biomedical applications, such as synthetic bone graft implants. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.08.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Basal plane ; Biocompatibility ; Biodegradability ; Biodegradation ; Biomedical materials ; Cations ; Cleavage ; Comminution ; Elution ; Glycerol ; Grafting ; Graphene ; Graphite ; In vivo methods and tests ; Ion exchange ; Nanocomposites ; Organic chemistry ; Particle size ; Polyphosphates ; Spinning ; Substitute bone ; Surgical implants</subject><ispartof>Carbon (New York), 2019-12, Vol.154, p.342-349</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-153a898a612935404f0beab6f5b615007de76a9d8da2ab60d5f5653ba6773c313</citedby><cites>FETCH-LOGICAL-c371t-153a898a612935404f0beab6f5b615007de76a9d8da2ab60d5f5653ba6773c313</cites><orcidid>0000-0003-4212-4821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622319308024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Arnold, Anne M.</creatorcontrib><creatorcontrib>Holt, Brian D.</creatorcontrib><creatorcontrib>Tang, Caoxin</creatorcontrib><creatorcontrib>Sydlik, Stefanie A.</creatorcontrib><title>Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility</title><title>Carbon (New York)</title><description>The application of functional graphenic materials (FGMs) in medicine has been limited due to insufficient knowledge of long–term degradation and cytocompatibility. Degradation studies that match the timeframe of clinical treatments are difficult to perform due to the limited timeframe in which in vitro studies can be conducted and the short lifespan of in vivo animal models. Here, we have designed an ex vivo experimental approach, where the degradation of FGMs can be monitored indefinitely and sampled at any point during the degradation process. We used this approach to study the aqueous and enzymatic degradation of phosphate graphenes (PGs), which are promising materials for biodegradable bone implants. We found that PGs chemically degrade through cation elution and basal plane scission of polyphosphates, and degradation timeframes are dependent on cation identity. Further, PGs also undergo physical degradation indicated by reduction of particle size. The pathways and timeframes of physical degradation of PGs are different for aqueous and enzymatic conditions. PG degradation was related to structure, which according to kinetic studies of the synthesis, could be manipulated to tune degradation. Nevertheless, all PGs and the resulting degradation byproducts are cytocompatible, opening the door for long–term biomedical applications, such as synthetic bone graft implants. [Display omitted]</description><subject>Basal plane</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Cations</subject><subject>Cleavage</subject><subject>Comminution</subject><subject>Elution</subject><subject>Glycerol</subject><subject>Grafting</subject><subject>Graphene</subject><subject>Graphite</subject><subject>In vivo methods and tests</subject><subject>Ion exchange</subject><subject>Nanocomposites</subject><subject>Organic chemistry</subject><subject>Particle size</subject><subject>Polyphosphates</subject><subject>Spinning</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gYuC69akadLUhSCDfzCgoK5DmtzOpEybmmbE2fkOvqFPYoa6dnW5h3PO5X4InROcEUz4ZZtp5WvXZzkmVYZFhjE7QDMiSppSUZFDNMMYi5TnOT1GJ-PYxrUQpJihl-e1G4e1CpB0ztjGgklWXg1r6CFxn9bAVbJ0_ern6zuA75LaOgPRYFSwrk9UbxK9C067bohKbTc27E7RUaM2I5z9zTl6u7t9XTyky6f7x8XNMtW0JCEljCpRCcVJXlFW4KLBNaiaN6zmhGFcGii5qowwKo8yNqxhnNFa8bKkmhI6RxdT7-Dd-xbGIFu39X08KXMaGxjlxd5VTC7t3Th6aOTgbaf8ThIs9_hkKyd8co9PYiEjvhi7nmIQP_iw4OWoLfQajPWggzTO_l_wC02Ge_I</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Arnold, Anne M.</creator><creator>Holt, Brian D.</creator><creator>Tang, Caoxin</creator><creator>Sydlik, Stefanie A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4212-4821</orcidid></search><sort><creationdate>20191201</creationdate><title>Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility</title><author>Arnold, Anne M. ; Holt, Brian D. ; Tang, Caoxin ; Sydlik, Stefanie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-153a898a612935404f0beab6f5b615007de76a9d8da2ab60d5f5653ba6773c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basal plane</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Cations</topic><topic>Cleavage</topic><topic>Comminution</topic><topic>Elution</topic><topic>Glycerol</topic><topic>Grafting</topic><topic>Graphene</topic><topic>Graphite</topic><topic>In vivo methods and tests</topic><topic>Ion exchange</topic><topic>Nanocomposites</topic><topic>Organic chemistry</topic><topic>Particle size</topic><topic>Polyphosphates</topic><topic>Spinning</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Anne M.</creatorcontrib><creatorcontrib>Holt, Brian D.</creatorcontrib><creatorcontrib>Tang, Caoxin</creatorcontrib><creatorcontrib>Sydlik, Stefanie A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Anne M.</au><au>Holt, Brian D.</au><au>Tang, Caoxin</au><au>Sydlik, Stefanie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility</atitle><jtitle>Carbon (New York)</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>154</volume><spage>342</spage><epage>349</epage><pages>342-349</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The application of functional graphenic materials (FGMs) in medicine has been limited due to insufficient knowledge of long–term degradation and cytocompatibility. Degradation studies that match the timeframe of clinical treatments are difficult to perform due to the limited timeframe in which in vitro studies can be conducted and the short lifespan of in vivo animal models. Here, we have designed an ex vivo experimental approach, where the degradation of FGMs can be monitored indefinitely and sampled at any point during the degradation process. We used this approach to study the aqueous and enzymatic degradation of phosphate graphenes (PGs), which are promising materials for biodegradable bone implants. We found that PGs chemically degrade through cation elution and basal plane scission of polyphosphates, and degradation timeframes are dependent on cation identity. Further, PGs also undergo physical degradation indicated by reduction of particle size. The pathways and timeframes of physical degradation of PGs are different for aqueous and enzymatic conditions. PG degradation was related to structure, which according to kinetic studies of the synthesis, could be manipulated to tune degradation. Nevertheless, all PGs and the resulting degradation byproducts are cytocompatible, opening the door for long–term biomedical applications, such as synthetic bone graft implants. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.08.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4212-4821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-12, Vol.154, p.342-349
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2315053641
source Elsevier ScienceDirect Journals
subjects Basal plane
Biocompatibility
Biodegradability
Biodegradation
Biomedical materials
Cations
Cleavage
Comminution
Elution
Glycerol
Grafting
Graphene
Graphite
In vivo methods and tests
Ion exchange
Nanocomposites
Organic chemistry
Particle size
Polyphosphates
Spinning
Substitute bone
Surgical implants
title Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphate%20modified%20graphene%20oxide:%20Long%E2%80%93term%20biodegradation%20and%20cytocompatibility&rft.jtitle=Carbon%20(New%20York)&rft.au=Arnold,%20Anne%20M.&rft.date=2019-12-01&rft.volume=154&rft.spage=342&rft.epage=349&rft.pages=342-349&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.08.005&rft_dat=%3Cproquest_cross%3E2315053641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315053641&rft_id=info:pmid/&rft_els_id=S0008622319308024&rfr_iscdi=true