Existence Theorem for a Weak Solution of the Optimal Feedback Control Problem for the Modified Kelvin–Voigt Model of Weakly Concentrated Aqueous Polymer Solutions
A theorem on the existence of a weak solution of the optimal feedback control problem for the modified Kelvin–Voigt model of weakly concentrated aqueous polymer solutions is proved. The proof is based on an approximation-topological approach to the study of fluid dynamic problems. At the first step,...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2019-09, Vol.100 (2), p.433-435 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theorem on the existence of a weak solution of the optimal feedback control problem for the modified Kelvin–Voigt model of weakly concentrated aqueous polymer solutions is proved. The proof is based on an approximation-topological approach to the study of fluid dynamic problems. At the first step, the considered feedback control problem is interpreted as an operator inclusion with a multivalued right-hand side. At the second step, the resulting inclusion is approximated by an operator inclusion with better properties. Then the existence of solutions for this inclusion is proved by applying a priori estimates of solutions and the degree theory for a class of multivalued mappings. At the third step, it is shown that the sequence of solutions of the approximation inclusion contains a subsequence that converges weakly to the solution of the original inclusion. Finally, it is proved that, among the solutions of the considered problem, there exists at least one minimizing a given cost functional. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562419050089 |