Optimization of grooved klystron collector design for efficient heat transfer
Klystron microwave amplifiers play a vital role in addressing the increasing demands of high‐average microwave power for strategic applications such as linear accelerators, active denial technologies, radar, and so forth. Typically, klystrons have an efficiency of 50%‐60% that demands an efficient t...
Gespeichert in:
Veröffentlicht in: | International journal of RF and microwave computer-aided engineering 2019-12, Vol.29 (12), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | International journal of RF and microwave computer-aided engineering |
container_volume | 29 |
creator | Raj, Arpit Kant, Deepender Bandyopadhyay, Ayan K. Joshi, Lalit M. |
description | Klystron microwave amplifiers play a vital role in addressing the increasing demands of high‐average microwave power for strategic applications such as linear accelerators, active denial technologies, radar, and so forth. Typically, klystrons have an efficiency of 50%‐60% that demands an efficient thermal design for dissipating the unused DC power in the form of spent electron beam in collector. Hence, thermal modeling of the collector for efficient heat dissipation is highly critical in design of high average power klystrons. Of several types of design, grooved collector design is widely employed so as to increase the surface area between the collector and coolant and thereby enhance heat transfer. In this article, a mathematical model and design strategy have been demonstrated to obtain the optimum dimensions, that is, height, depth, and width of fins based on film coefficient and Reynolds number. For validation, the dimensions are then simulated in a computational fluid dynamics software (ANSYS‐Fluent) demonstrating excellent agreement with the mathematical modeling. In addition, the optimum choice of grooving method (longitudinal or crossed) for the given power level has also been provided. The demonstrated strategy can also potentially be employed to other devices, which uses groove based design with water as coolant medium such as gyrotrons, plasma devices, and so forth. |
doi_str_mv | 10.1002/mmce.21950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314513070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314513070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2960-4ced06a3faa3727a68fc8a87c9ede7e2bb91210f3c20f70bbfcceabe4e3cd7ce3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmNw4RdU4obU4SRdsx7RND6kTbuAxC1KU2dktM1IMlD59XQrZ05-ZT-2pYeQawoTCsDumkbjhNFiCidkRKEoUsjE2-kx52nGCjgnFyFsAfoZ4yOyWu-ibeyPita1iTPJxjv3hVXyUXch-r6nXV2jjs4nFQa7aRPTRzTGaottTN5RxSR61QaD_pKcGVUHvPqrY_L6sHiZP6XL9ePz_H6ZalbkkGYaK8gVN0pxwYTKZ0bP1EzoAisUyMqyoIyC4ZqBEVCWRmtUJWbIdSU08jG5Ge7uvPvcY4hy6_a-7V9Kxmk2pRwE9NTtQGnvQvBo5M7bRvlOUpAHXfKgSx519TAd4G9bY_cPKVer-WLY-QX8G2-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314513070</pqid></control><display><type>article</type><title>Optimization of grooved klystron collector design for efficient heat transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Raj, Arpit ; Kant, Deepender ; Bandyopadhyay, Ayan K. ; Joshi, Lalit M.</creator><creatorcontrib>Raj, Arpit ; Kant, Deepender ; Bandyopadhyay, Ayan K. ; Joshi, Lalit M.</creatorcontrib><description>Klystron microwave amplifiers play a vital role in addressing the increasing demands of high‐average microwave power for strategic applications such as linear accelerators, active denial technologies, radar, and so forth. Typically, klystrons have an efficiency of 50%‐60% that demands an efficient thermal design for dissipating the unused DC power in the form of spent electron beam in collector. Hence, thermal modeling of the collector for efficient heat dissipation is highly critical in design of high average power klystrons. Of several types of design, grooved collector design is widely employed so as to increase the surface area between the collector and coolant and thereby enhance heat transfer. In this article, a mathematical model and design strategy have been demonstrated to obtain the optimum dimensions, that is, height, depth, and width of fins based on film coefficient and Reynolds number. For validation, the dimensions are then simulated in a computational fluid dynamics software (ANSYS‐Fluent) demonstrating excellent agreement with the mathematical modeling. In addition, the optimum choice of grooving method (longitudinal or crossed) for the given power level has also been provided. The demonstrated strategy can also potentially be employed to other devices, which uses groove based design with water as coolant medium such as gyrotrons, plasma devices, and so forth.</description><identifier>ISSN: 1096-4290</identifier><identifier>EISSN: 1099-047X</identifier><identifier>DOI: 10.1002/mmce.21950</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Accelerators ; CAD ; collector design ; Computational fluid dynamics ; Computer aided design ; Computer simulation ; Cyclotron resonance devices ; Design optimization ; Electron beams ; Fins ; Fluid flow ; Grooves ; Heat transfer ; klystron ; Klystrons ; Linear accelerators ; Mathematical analysis ; Mathematical models ; Microwave amplifiers ; optimum groove dimension ; Reynolds number ; Thermal analysis ; Thermal design ; thermal optimization</subject><ispartof>International journal of RF and microwave computer-aided engineering, 2019-12, Vol.29 (12), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2960-4ced06a3faa3727a68fc8a87c9ede7e2bb91210f3c20f70bbfcceabe4e3cd7ce3</cites><orcidid>0000-0002-1806-7161 ; 0000-0002-0847-6607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmmce.21950$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmmce.21950$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Raj, Arpit</creatorcontrib><creatorcontrib>Kant, Deepender</creatorcontrib><creatorcontrib>Bandyopadhyay, Ayan K.</creatorcontrib><creatorcontrib>Joshi, Lalit M.</creatorcontrib><title>Optimization of grooved klystron collector design for efficient heat transfer</title><title>International journal of RF and microwave computer-aided engineering</title><description>Klystron microwave amplifiers play a vital role in addressing the increasing demands of high‐average microwave power for strategic applications such as linear accelerators, active denial technologies, radar, and so forth. Typically, klystrons have an efficiency of 50%‐60% that demands an efficient thermal design for dissipating the unused DC power in the form of spent electron beam in collector. Hence, thermal modeling of the collector for efficient heat dissipation is highly critical in design of high average power klystrons. Of several types of design, grooved collector design is widely employed so as to increase the surface area between the collector and coolant and thereby enhance heat transfer. In this article, a mathematical model and design strategy have been demonstrated to obtain the optimum dimensions, that is, height, depth, and width of fins based on film coefficient and Reynolds number. For validation, the dimensions are then simulated in a computational fluid dynamics software (ANSYS‐Fluent) demonstrating excellent agreement with the mathematical modeling. In addition, the optimum choice of grooving method (longitudinal or crossed) for the given power level has also been provided. The demonstrated strategy can also potentially be employed to other devices, which uses groove based design with water as coolant medium such as gyrotrons, plasma devices, and so forth.</description><subject>Accelerators</subject><subject>CAD</subject><subject>collector design</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Cyclotron resonance devices</subject><subject>Design optimization</subject><subject>Electron beams</subject><subject>Fins</subject><subject>Fluid flow</subject><subject>Grooves</subject><subject>Heat transfer</subject><subject>klystron</subject><subject>Klystrons</subject><subject>Linear accelerators</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microwave amplifiers</subject><subject>optimum groove dimension</subject><subject>Reynolds number</subject><subject>Thermal analysis</subject><subject>Thermal design</subject><subject>thermal optimization</subject><issn>1096-4290</issn><issn>1099-047X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmNw4RdU4obU4SRdsx7RND6kTbuAxC1KU2dktM1IMlD59XQrZ05-ZT-2pYeQawoTCsDumkbjhNFiCidkRKEoUsjE2-kx52nGCjgnFyFsAfoZ4yOyWu-ibeyPita1iTPJxjv3hVXyUXch-r6nXV2jjs4nFQa7aRPTRzTGaottTN5RxSR61QaD_pKcGVUHvPqrY_L6sHiZP6XL9ePz_H6ZalbkkGYaK8gVN0pxwYTKZ0bP1EzoAisUyMqyoIyC4ZqBEVCWRmtUJWbIdSU08jG5Ge7uvPvcY4hy6_a-7V9Kxmk2pRwE9NTtQGnvQvBo5M7bRvlOUpAHXfKgSx519TAd4G9bY_cPKVer-WLY-QX8G2-I</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Raj, Arpit</creator><creator>Kant, Deepender</creator><creator>Bandyopadhyay, Ayan K.</creator><creator>Joshi, Lalit M.</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1806-7161</orcidid><orcidid>https://orcid.org/0000-0002-0847-6607</orcidid></search><sort><creationdate>201912</creationdate><title>Optimization of grooved klystron collector design for efficient heat transfer</title><author>Raj, Arpit ; Kant, Deepender ; Bandyopadhyay, Ayan K. ; Joshi, Lalit M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2960-4ced06a3faa3727a68fc8a87c9ede7e2bb91210f3c20f70bbfcceabe4e3cd7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerators</topic><topic>CAD</topic><topic>collector design</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Cyclotron resonance devices</topic><topic>Design optimization</topic><topic>Electron beams</topic><topic>Fins</topic><topic>Fluid flow</topic><topic>Grooves</topic><topic>Heat transfer</topic><topic>klystron</topic><topic>Klystrons</topic><topic>Linear accelerators</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microwave amplifiers</topic><topic>optimum groove dimension</topic><topic>Reynolds number</topic><topic>Thermal analysis</topic><topic>Thermal design</topic><topic>thermal optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, Arpit</creatorcontrib><creatorcontrib>Kant, Deepender</creatorcontrib><creatorcontrib>Bandyopadhyay, Ayan K.</creatorcontrib><creatorcontrib>Joshi, Lalit M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of RF and microwave computer-aided engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, Arpit</au><au>Kant, Deepender</au><au>Bandyopadhyay, Ayan K.</au><au>Joshi, Lalit M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of grooved klystron collector design for efficient heat transfer</atitle><jtitle>International journal of RF and microwave computer-aided engineering</jtitle><date>2019-12</date><risdate>2019</risdate><volume>29</volume><issue>12</issue><epage>n/a</epage><issn>1096-4290</issn><eissn>1099-047X</eissn><abstract>Klystron microwave amplifiers play a vital role in addressing the increasing demands of high‐average microwave power for strategic applications such as linear accelerators, active denial technologies, radar, and so forth. Typically, klystrons have an efficiency of 50%‐60% that demands an efficient thermal design for dissipating the unused DC power in the form of spent electron beam in collector. Hence, thermal modeling of the collector for efficient heat dissipation is highly critical in design of high average power klystrons. Of several types of design, grooved collector design is widely employed so as to increase the surface area between the collector and coolant and thereby enhance heat transfer. In this article, a mathematical model and design strategy have been demonstrated to obtain the optimum dimensions, that is, height, depth, and width of fins based on film coefficient and Reynolds number. For validation, the dimensions are then simulated in a computational fluid dynamics software (ANSYS‐Fluent) demonstrating excellent agreement with the mathematical modeling. In addition, the optimum choice of grooving method (longitudinal or crossed) for the given power level has also been provided. The demonstrated strategy can also potentially be employed to other devices, which uses groove based design with water as coolant medium such as gyrotrons, plasma devices, and so forth.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mmce.21950</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1806-7161</orcidid><orcidid>https://orcid.org/0000-0002-0847-6607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-4290 |
ispartof | International journal of RF and microwave computer-aided engineering, 2019-12, Vol.29 (12), p.n/a |
issn | 1096-4290 1099-047X |
language | eng |
recordid | cdi_proquest_journals_2314513070 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accelerators CAD collector design Computational fluid dynamics Computer aided design Computer simulation Cyclotron resonance devices Design optimization Electron beams Fins Fluid flow Grooves Heat transfer klystron Klystrons Linear accelerators Mathematical analysis Mathematical models Microwave amplifiers optimum groove dimension Reynolds number Thermal analysis Thermal design thermal optimization |
title | Optimization of grooved klystron collector design for efficient heat transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20grooved%20klystron%20collector%20design%20for%20efficient%20heat%20transfer&rft.jtitle=International%20journal%20of%20RF%20and%20microwave%20computer-aided%20engineering&rft.au=Raj,%20Arpit&rft.date=2019-12&rft.volume=29&rft.issue=12&rft.epage=n/a&rft.issn=1096-4290&rft.eissn=1099-047X&rft_id=info:doi/10.1002/mmce.21950&rft_dat=%3Cproquest_cross%3E2314513070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314513070&rft_id=info:pmid/&rfr_iscdi=true |