Preparation of a high‐performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self‐assembled to detect pesticide residues

This paper reports a “bottom‐up” substrate preparation method using a two‐phase interface self‐assembly technology that combines silver‐coated gold core–shell nanorods with the thermally shrinkable polystyrene (TSP) support material for surface‐enhanced Raman spectroscopy (SERS), that is, TSP‐SERS s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2019-11, Vol.50 (11), p.1679-1690
Hauptverfasser: Zhao, Hang, Hasi, Wuliji, Li, Nan, Sha, Xuanyu, Han, Siqingaowa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1690
container_issue 11
container_start_page 1679
container_title Journal of Raman spectroscopy
container_volume 50
creator Zhao, Hang
Hasi, Wuliji
Li, Nan
Sha, Xuanyu
Han, Siqingaowa
description This paper reports a “bottom‐up” substrate preparation method using a two‐phase interface self‐assembly technology that combines silver‐coated gold core–shell nanorods with the thermally shrinkable polystyrene (TSP) support material for surface‐enhanced Raman spectroscopy (SERS), that is, TSP‐SERS substrate. The gold nanorods with long absorption wavelength were used as the core, and the silver shells were coated to obtain the core–shell nanostructures with a stronger resonance with the wavelength of the light source. The density of the nanostructures and numbers of “hot spots” within the light spot increased via the three‐dimensional folding feature formed by thermal shrinkage. The combined effect of the two factors increases the enhancement factor by an order of magnitude to 107 after thermal contraction. The detection concentration of 4‐mercaptobenzoic acid can reach 10−9 M, and the maximum relative standard deviation is only 8.9%. In fact, the detection limit of benzimidazole on the surface of apple can reach 0.5 mg/L, and the recovery deviation is controlled within the range of 11.7%. The practical detection of benzimidazole pesticide residues showed that this method has wide application prospects in the detection of pesticide residues. A high‐performance thermally shrinkable polystyrene surface‐enhanced Raman spectroscopy substrate via Au@Ag nanorods self‐assembled was prepared to detect pesticide residues. The strong resonance absorption of nanorods and 3D folds form by thermal shrinkage are exciting in improving the properties of the thermally shrinkable polystyrene substrate.
doi_str_mv 10.1002/jrs.5714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314441336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314441336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3304-c479adc92dd290cd740f9526392cd770e32bcc00ede8aeeffffb8164a3f2809c3</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhq2qlbqlSH0ES71wCR3HTrK-sULQUiEVsXCOvPaE9TYbpx4vKDcegQNPyJPUdHtlLjO_9M3_Sz9jXwQcC4Dy2ybScdUI9Y7NBOimUFVVvWczkE1TgJrXH9knog0AaF2LGXu-ijiaaJIPAw8dN3zt79Yvj08jxi7ErRks8rTGfPX9xGkd_fDbrHrkY-gnSlPEAfny7HrJabeilJ2Q33vDF7uTxR0fzBBicMQJ-y67GiLc5m_HU-AOE9rER6TkrXfII5J3O6TP7ENnesLD__uA3Z6f3Zz-KC5_fb84XVwWVkpQhVWNNs7q0rlSg3WNgk5XZS11mUUDKMuVtQDocG4QuzyruaiVkV05B23lAfu69x1j-JNzU7sJuzjkyLaUQiklpKwzdbSnbAxEEbt2jH5r4tQKaF87b3Pn7WvnGS326IPvcXqTa39eL__xfwEfA4jD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314441336</pqid></control><display><type>article</type><title>Preparation of a high‐performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self‐assembled to detect pesticide residues</title><source>Wiley Online Library Journals</source><creator>Zhao, Hang ; Hasi, Wuliji ; Li, Nan ; Sha, Xuanyu ; Han, Siqingaowa</creator><creatorcontrib>Zhao, Hang ; Hasi, Wuliji ; Li, Nan ; Sha, Xuanyu ; Han, Siqingaowa</creatorcontrib><description>This paper reports a “bottom‐up” substrate preparation method using a two‐phase interface self‐assembly technology that combines silver‐coated gold core–shell nanorods with the thermally shrinkable polystyrene (TSP) support material for surface‐enhanced Raman spectroscopy (SERS), that is, TSP‐SERS substrate. The gold nanorods with long absorption wavelength were used as the core, and the silver shells were coated to obtain the core–shell nanostructures with a stronger resonance with the wavelength of the light source. The density of the nanostructures and numbers of “hot spots” within the light spot increased via the three‐dimensional folding feature formed by thermal shrinkage. The combined effect of the two factors increases the enhancement factor by an order of magnitude to 107 after thermal contraction. The detection concentration of 4‐mercaptobenzoic acid can reach 10−9 M, and the maximum relative standard deviation is only 8.9%. In fact, the detection limit of benzimidazole on the surface of apple can reach 0.5 mg/L, and the recovery deviation is controlled within the range of 11.7%. The practical detection of benzimidazole pesticide residues showed that this method has wide application prospects in the detection of pesticide residues. A high‐performance thermally shrinkable polystyrene surface‐enhanced Raman spectroscopy substrate via Au@Ag nanorods self‐assembled was prepared to detect pesticide residues. The strong resonance absorption of nanorods and 3D folds form by thermal shrinkage are exciting in improving the properties of the thermally shrinkable polystyrene substrate.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5714</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Au@Ag nanorods ; benzimidazole ; Benzimidazoles ; Contraction ; Core-shell structure ; Gold ; Light sources ; Light spots ; Nanorods ; Nanostructure ; Pesticide residues ; Pesticides ; Polystyrene ; Polystyrene resins ; Raman spectroscopy ; Residues ; Shrinkage ; Silver ; Substrates ; surface‐enhanced Raman spectroscopy ; Thermal contraction ; thermally shrinkable polystyrene ; Wavelength</subject><ispartof>Journal of Raman spectroscopy, 2019-11, Vol.50 (11), p.1679-1690</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3304-c479adc92dd290cd740f9526392cd770e32bcc00ede8aeeffffb8164a3f2809c3</citedby><cites>FETCH-LOGICAL-c3304-c479adc92dd290cd740f9526392cd770e32bcc00ede8aeeffffb8164a3f2809c3</cites><orcidid>0000-0002-8001-8790 ; 0000-0002-4696-0934 ; 0000-0002-9193-3070 ; 0000-0002-9903-0183 ; 0000-0003-2424-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5714$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5714$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Hasi, Wuliji</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Sha, Xuanyu</creatorcontrib><creatorcontrib>Han, Siqingaowa</creatorcontrib><title>Preparation of a high‐performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self‐assembled to detect pesticide residues</title><title>Journal of Raman spectroscopy</title><description>This paper reports a “bottom‐up” substrate preparation method using a two‐phase interface self‐assembly technology that combines silver‐coated gold core–shell nanorods with the thermally shrinkable polystyrene (TSP) support material for surface‐enhanced Raman spectroscopy (SERS), that is, TSP‐SERS substrate. The gold nanorods with long absorption wavelength were used as the core, and the silver shells were coated to obtain the core–shell nanostructures with a stronger resonance with the wavelength of the light source. The density of the nanostructures and numbers of “hot spots” within the light spot increased via the three‐dimensional folding feature formed by thermal shrinkage. The combined effect of the two factors increases the enhancement factor by an order of magnitude to 107 after thermal contraction. The detection concentration of 4‐mercaptobenzoic acid can reach 10−9 M, and the maximum relative standard deviation is only 8.9%. In fact, the detection limit of benzimidazole on the surface of apple can reach 0.5 mg/L, and the recovery deviation is controlled within the range of 11.7%. The practical detection of benzimidazole pesticide residues showed that this method has wide application prospects in the detection of pesticide residues. A high‐performance thermally shrinkable polystyrene surface‐enhanced Raman spectroscopy substrate via Au@Ag nanorods self‐assembled was prepared to detect pesticide residues. The strong resonance absorption of nanorods and 3D folds form by thermal shrinkage are exciting in improving the properties of the thermally shrinkable polystyrene substrate.</description><subject>Au@Ag nanorods</subject><subject>benzimidazole</subject><subject>Benzimidazoles</subject><subject>Contraction</subject><subject>Core-shell structure</subject><subject>Gold</subject><subject>Light sources</subject><subject>Light spots</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Pesticide residues</subject><subject>Pesticides</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Raman spectroscopy</subject><subject>Residues</subject><subject>Shrinkage</subject><subject>Silver</subject><subject>Substrates</subject><subject>surface‐enhanced Raman spectroscopy</subject><subject>Thermal contraction</subject><subject>thermally shrinkable polystyrene</subject><subject>Wavelength</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFO3DAQhq2qlbqlSH0ES71wCR3HTrK-sULQUiEVsXCOvPaE9TYbpx4vKDcegQNPyJPUdHtlLjO_9M3_Sz9jXwQcC4Dy2ybScdUI9Y7NBOimUFVVvWczkE1TgJrXH9knog0AaF2LGXu-ijiaaJIPAw8dN3zt79Yvj08jxi7ErRks8rTGfPX9xGkd_fDbrHrkY-gnSlPEAfny7HrJabeilJ2Q33vDF7uTxR0fzBBicMQJ-y67GiLc5m_HU-AOE9rER6TkrXfII5J3O6TP7ENnesLD__uA3Z6f3Zz-KC5_fb84XVwWVkpQhVWNNs7q0rlSg3WNgk5XZS11mUUDKMuVtQDocG4QuzyruaiVkV05B23lAfu69x1j-JNzU7sJuzjkyLaUQiklpKwzdbSnbAxEEbt2jH5r4tQKaF87b3Pn7WvnGS326IPvcXqTa39eL__xfwEfA4jD</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Zhao, Hang</creator><creator>Hasi, Wuliji</creator><creator>Li, Nan</creator><creator>Sha, Xuanyu</creator><creator>Han, Siqingaowa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8001-8790</orcidid><orcidid>https://orcid.org/0000-0002-4696-0934</orcidid><orcidid>https://orcid.org/0000-0002-9193-3070</orcidid><orcidid>https://orcid.org/0000-0002-9903-0183</orcidid><orcidid>https://orcid.org/0000-0003-2424-9225</orcidid></search><sort><creationdate>201911</creationdate><title>Preparation of a high‐performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self‐assembled to detect pesticide residues</title><author>Zhao, Hang ; Hasi, Wuliji ; Li, Nan ; Sha, Xuanyu ; Han, Siqingaowa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3304-c479adc92dd290cd740f9526392cd770e32bcc00ede8aeeffffb8164a3f2809c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Au@Ag nanorods</topic><topic>benzimidazole</topic><topic>Benzimidazoles</topic><topic>Contraction</topic><topic>Core-shell structure</topic><topic>Gold</topic><topic>Light sources</topic><topic>Light spots</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Pesticide residues</topic><topic>Pesticides</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Raman spectroscopy</topic><topic>Residues</topic><topic>Shrinkage</topic><topic>Silver</topic><topic>Substrates</topic><topic>surface‐enhanced Raman spectroscopy</topic><topic>Thermal contraction</topic><topic>thermally shrinkable polystyrene</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Hasi, Wuliji</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Sha, Xuanyu</creatorcontrib><creatorcontrib>Han, Siqingaowa</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hang</au><au>Hasi, Wuliji</au><au>Li, Nan</au><au>Sha, Xuanyu</au><au>Han, Siqingaowa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of a high‐performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self‐assembled to detect pesticide residues</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2019-11</date><risdate>2019</risdate><volume>50</volume><issue>11</issue><spage>1679</spage><epage>1690</epage><pages>1679-1690</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>This paper reports a “bottom‐up” substrate preparation method using a two‐phase interface self‐assembly technology that combines silver‐coated gold core–shell nanorods with the thermally shrinkable polystyrene (TSP) support material for surface‐enhanced Raman spectroscopy (SERS), that is, TSP‐SERS substrate. The gold nanorods with long absorption wavelength were used as the core, and the silver shells were coated to obtain the core–shell nanostructures with a stronger resonance with the wavelength of the light source. The density of the nanostructures and numbers of “hot spots” within the light spot increased via the three‐dimensional folding feature formed by thermal shrinkage. The combined effect of the two factors increases the enhancement factor by an order of magnitude to 107 after thermal contraction. The detection concentration of 4‐mercaptobenzoic acid can reach 10−9 M, and the maximum relative standard deviation is only 8.9%. In fact, the detection limit of benzimidazole on the surface of apple can reach 0.5 mg/L, and the recovery deviation is controlled within the range of 11.7%. The practical detection of benzimidazole pesticide residues showed that this method has wide application prospects in the detection of pesticide residues. A high‐performance thermally shrinkable polystyrene surface‐enhanced Raman spectroscopy substrate via Au@Ag nanorods self‐assembled was prepared to detect pesticide residues. The strong resonance absorption of nanorods and 3D folds form by thermal shrinkage are exciting in improving the properties of the thermally shrinkable polystyrene substrate.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5714</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8001-8790</orcidid><orcidid>https://orcid.org/0000-0002-4696-0934</orcidid><orcidid>https://orcid.org/0000-0002-9193-3070</orcidid><orcidid>https://orcid.org/0000-0002-9903-0183</orcidid><orcidid>https://orcid.org/0000-0003-2424-9225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2019-11, Vol.50 (11), p.1679-1690
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_2314441336
source Wiley Online Library Journals
subjects Au@Ag nanorods
benzimidazole
Benzimidazoles
Contraction
Core-shell structure
Gold
Light sources
Light spots
Nanorods
Nanostructure
Pesticide residues
Pesticides
Polystyrene
Polystyrene resins
Raman spectroscopy
Residues
Shrinkage
Silver
Substrates
surface‐enhanced Raman spectroscopy
Thermal contraction
thermally shrinkable polystyrene
Wavelength
title Preparation of a high‐performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self‐assembled to detect pesticide residues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20a%20high%E2%80%90performance%20thermally%20shrinkable%20polystyrene%20SERS%20substrate%20via%20Au@Ag%20nanorods%20self%E2%80%90assembled%20to%20detect%20pesticide%20residues&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Zhao,%20Hang&rft.date=2019-11&rft.volume=50&rft.issue=11&rft.spage=1679&rft.epage=1690&rft.pages=1679-1690&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5714&rft_dat=%3Cproquest_cross%3E2314441336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314441336&rft_id=info:pmid/&rfr_iscdi=true