Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments
The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2019-12, Vol.30 (12), p.2759-2774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2774 |
---|---|
container_issue | 12 |
container_start_page | 2759 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 30 |
creator | Hong, Zicong Chen, Wuhui Huang, Huawei Guo, Song Zheng, Zibin |
description | The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases. |
doi_str_mv | 10.1109/TPDS.2019.2926979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2314391216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756083</ieee_id><sourcerecordid>2314391216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhoMoWKsPIF4CnlNnsrvJ7lFqtYVKBet5SbOzJSXNxt1E8O1NaPE0_-H7Z5gviu4RZoignrYfL5-zFFDNUpVmKlcX0QSFkEmKkl0OGbhIVIrqOroJ4QCAXACfRMV7X3dVsnRtPHeuJV901Q8N-dj23ZBdE2-srV1hqmYfW-fjVWP60PmqqOOV2yYLs6dkXrvenEsjt2h-Ku-aIzVduI2ubFEHujvPafT1utjOl8l687aaP6-TkgnVJZkRpKjkebbbSeAMSpJWKEnDdxmi4ACE3GaGgwUpGOYSzI6BIZKkpGLT6PG0t_Xuu6fQ6YPrfTOc1ClDzhSmmA0UnqjSuxA8Wd366lj4X42gR5N6NKlHk_pscug8nDoVEf3zMhcZSMb-ALKab4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314391216</pqid></control><display><type>article</type><title>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Zicong ; Chen, Wuhui ; Huang, Huawei ; Guo, Song ; Zheng, Zibin</creator><creatorcontrib>Hong, Zicong ; Chen, Wuhui ; Huang, Huawei ; Guo, Song ; Zheng, Zibin</creatorcontrib><description>The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2926979</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytics ; Automatic pilots ; Cloud computing ; Computation offloading ; Computational modeling ; Computer simulation ; Data management ; Distributed algorithms ; Domains ; Edge computing ; Energy consumption ; Game theory ; Industrial applications ; industrial IoT ; Internet of Things ; Provisioning ; Quality of service ; Servers ; Smart grid ; Task analysis</subject><ispartof>IEEE transactions on parallel and distributed systems, 2019-12, Vol.30 (12), p.2759-2774</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</citedby><cites>FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</cites><orcidid>0000-0003-4430-7904 ; 0000-0002-7035-6446 ; 0000-0001-9831-2202 ; 0000-0001-7872-7718 ; 0000-0001-5689-382X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Zicong</creatorcontrib><creatorcontrib>Chen, Wuhui</creatorcontrib><creatorcontrib>Huang, Huawei</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Zheng, Zibin</creatorcontrib><title>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.</description><subject>Algorithms</subject><subject>Analytics</subject><subject>Automatic pilots</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data management</subject><subject>Distributed algorithms</subject><subject>Domains</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Game theory</subject><subject>Industrial applications</subject><subject>industrial IoT</subject><subject>Internet of Things</subject><subject>Provisioning</subject><subject>Quality of service</subject><subject>Servers</subject><subject>Smart grid</subject><subject>Task analysis</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhoMoWKsPIF4CnlNnsrvJ7lFqtYVKBet5SbOzJSXNxt1E8O1NaPE0_-H7Z5gviu4RZoignrYfL5-zFFDNUpVmKlcX0QSFkEmKkl0OGbhIVIrqOroJ4QCAXACfRMV7X3dVsnRtPHeuJV901Q8N-dj23ZBdE2-srV1hqmYfW-fjVWP60PmqqOOV2yYLs6dkXrvenEsjt2h-Ku-aIzVduI2ubFEHujvPafT1utjOl8l687aaP6-TkgnVJZkRpKjkebbbSeAMSpJWKEnDdxmi4ACE3GaGgwUpGOYSzI6BIZKkpGLT6PG0t_Xuu6fQ6YPrfTOc1ClDzhSmmA0UnqjSuxA8Wd366lj4X42gR5N6NKlHk_pscug8nDoVEf3zMhcZSMb-ALKab4c</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hong, Zicong</creator><creator>Chen, Wuhui</creator><creator>Huang, Huawei</creator><creator>Guo, Song</creator><creator>Zheng, Zibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4430-7904</orcidid><orcidid>https://orcid.org/0000-0002-7035-6446</orcidid><orcidid>https://orcid.org/0000-0001-9831-2202</orcidid><orcidid>https://orcid.org/0000-0001-7872-7718</orcidid><orcidid>https://orcid.org/0000-0001-5689-382X</orcidid></search><sort><creationdate>20191201</creationdate><title>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</title><author>Hong, Zicong ; Chen, Wuhui ; Huang, Huawei ; Guo, Song ; Zheng, Zibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analytics</topic><topic>Automatic pilots</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data management</topic><topic>Distributed algorithms</topic><topic>Domains</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Game theory</topic><topic>Industrial applications</topic><topic>industrial IoT</topic><topic>Internet of Things</topic><topic>Provisioning</topic><topic>Quality of service</topic><topic>Servers</topic><topic>Smart grid</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Zicong</creatorcontrib><creatorcontrib>Chen, Wuhui</creatorcontrib><creatorcontrib>Huang, Huawei</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Zheng, Zibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Zicong</au><au>Chen, Wuhui</au><au>Huang, Huawei</au><au>Guo, Song</au><au>Zheng, Zibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>30</volume><issue>12</issue><spage>2759</spage><epage>2774</epage><pages>2759-2774</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2926979</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4430-7904</orcidid><orcidid>https://orcid.org/0000-0002-7035-6446</orcidid><orcidid>https://orcid.org/0000-0001-9831-2202</orcidid><orcidid>https://orcid.org/0000-0001-7872-7718</orcidid><orcidid>https://orcid.org/0000-0001-5689-382X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2019-12, Vol.30 (12), p.2759-2774 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_proquest_journals_2314391216 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytics Automatic pilots Cloud computing Computation offloading Computational modeling Computer simulation Data management Distributed algorithms Domains Edge computing Energy consumption Game theory Industrial applications industrial IoT Internet of Things Provisioning Quality of service Servers Smart grid Task analysis |
title | Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Hop%20Cooperative%20Computation%20Offloading%20for%20Industrial%20IoT-Edge-Cloud%20Computing%20Environments&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Hong,%20Zicong&rft.date=2019-12-01&rft.volume=30&rft.issue=12&rft.spage=2759&rft.epage=2774&rft.pages=2759-2774&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2926979&rft_dat=%3Cproquest_RIE%3E2314391216%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314391216&rft_id=info:pmid/&rft_ieee_id=8756083&rfr_iscdi=true |