Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments

The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2019-12, Vol.30 (12), p.2759-2774
Hauptverfasser: Hong, Zicong, Chen, Wuhui, Huang, Huawei, Guo, Song, Zheng, Zibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2774
container_issue 12
container_start_page 2759
container_title IEEE transactions on parallel and distributed systems
container_volume 30
creator Hong, Zicong
Chen, Wuhui
Huang, Huawei
Guo, Song
Zheng, Zibin
description The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.
doi_str_mv 10.1109/TPDS.2019.2926979
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2314391216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756083</ieee_id><sourcerecordid>2314391216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhoMoWKsPIF4CnlNnsrvJ7lFqtYVKBet5SbOzJSXNxt1E8O1NaPE0_-H7Z5gviu4RZoignrYfL5-zFFDNUpVmKlcX0QSFkEmKkl0OGbhIVIrqOroJ4QCAXACfRMV7X3dVsnRtPHeuJV901Q8N-dj23ZBdE2-srV1hqmYfW-fjVWP60PmqqOOV2yYLs6dkXrvenEsjt2h-Ku-aIzVduI2ubFEHujvPafT1utjOl8l687aaP6-TkgnVJZkRpKjkebbbSeAMSpJWKEnDdxmi4ACE3GaGgwUpGOYSzI6BIZKkpGLT6PG0t_Xuu6fQ6YPrfTOc1ClDzhSmmA0UnqjSuxA8Wd366lj4X42gR5N6NKlHk_pscug8nDoVEf3zMhcZSMb-ALKab4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314391216</pqid></control><display><type>article</type><title>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Zicong ; Chen, Wuhui ; Huang, Huawei ; Guo, Song ; Zheng, Zibin</creator><creatorcontrib>Hong, Zicong ; Chen, Wuhui ; Huang, Huawei ; Guo, Song ; Zheng, Zibin</creatorcontrib><description>The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2926979</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytics ; Automatic pilots ; Cloud computing ; Computation offloading ; Computational modeling ; Computer simulation ; Data management ; Distributed algorithms ; Domains ; Edge computing ; Energy consumption ; Game theory ; Industrial applications ; industrial IoT ; Internet of Things ; Provisioning ; Quality of service ; Servers ; Smart grid ; Task analysis</subject><ispartof>IEEE transactions on parallel and distributed systems, 2019-12, Vol.30 (12), p.2759-2774</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</citedby><cites>FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</cites><orcidid>0000-0003-4430-7904 ; 0000-0002-7035-6446 ; 0000-0001-9831-2202 ; 0000-0001-7872-7718 ; 0000-0001-5689-382X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Zicong</creatorcontrib><creatorcontrib>Chen, Wuhui</creatorcontrib><creatorcontrib>Huang, Huawei</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Zheng, Zibin</creatorcontrib><title>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.</description><subject>Algorithms</subject><subject>Analytics</subject><subject>Automatic pilots</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data management</subject><subject>Distributed algorithms</subject><subject>Domains</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Game theory</subject><subject>Industrial applications</subject><subject>industrial IoT</subject><subject>Internet of Things</subject><subject>Provisioning</subject><subject>Quality of service</subject><subject>Servers</subject><subject>Smart grid</subject><subject>Task analysis</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhoMoWKsPIF4CnlNnsrvJ7lFqtYVKBet5SbOzJSXNxt1E8O1NaPE0_-H7Z5gviu4RZoignrYfL5-zFFDNUpVmKlcX0QSFkEmKkl0OGbhIVIrqOroJ4QCAXACfRMV7X3dVsnRtPHeuJV901Q8N-dj23ZBdE2-srV1hqmYfW-fjVWP60PmqqOOV2yYLs6dkXrvenEsjt2h-Ku-aIzVduI2ubFEHujvPafT1utjOl8l687aaP6-TkgnVJZkRpKjkebbbSeAMSpJWKEnDdxmi4ACE3GaGgwUpGOYSzI6BIZKkpGLT6PG0t_Xuu6fQ6YPrfTOc1ClDzhSmmA0UnqjSuxA8Wd366lj4X42gR5N6NKlHk_pscug8nDoVEf3zMhcZSMb-ALKab4c</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hong, Zicong</creator><creator>Chen, Wuhui</creator><creator>Huang, Huawei</creator><creator>Guo, Song</creator><creator>Zheng, Zibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4430-7904</orcidid><orcidid>https://orcid.org/0000-0002-7035-6446</orcidid><orcidid>https://orcid.org/0000-0001-9831-2202</orcidid><orcidid>https://orcid.org/0000-0001-7872-7718</orcidid><orcidid>https://orcid.org/0000-0001-5689-382X</orcidid></search><sort><creationdate>20191201</creationdate><title>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</title><author>Hong, Zicong ; Chen, Wuhui ; Huang, Huawei ; Guo, Song ; Zheng, Zibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6d5e9ec476bb80430ce8f598e1096115400e14f6d40f08531780db30dee8e9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analytics</topic><topic>Automatic pilots</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data management</topic><topic>Distributed algorithms</topic><topic>Domains</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Game theory</topic><topic>Industrial applications</topic><topic>industrial IoT</topic><topic>Internet of Things</topic><topic>Provisioning</topic><topic>Quality of service</topic><topic>Servers</topic><topic>Smart grid</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Zicong</creatorcontrib><creatorcontrib>Chen, Wuhui</creatorcontrib><creatorcontrib>Huang, Huawei</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Zheng, Zibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Zicong</au><au>Chen, Wuhui</au><au>Huang, Huawei</au><au>Guo, Song</au><au>Zheng, Zibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>30</volume><issue>12</issue><spage>2759</spage><epage>2774</epage><pages>2759-2774</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2926979</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4430-7904</orcidid><orcidid>https://orcid.org/0000-0002-7035-6446</orcidid><orcidid>https://orcid.org/0000-0001-9831-2202</orcidid><orcidid>https://orcid.org/0000-0001-7872-7718</orcidid><orcidid>https://orcid.org/0000-0001-5689-382X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2019-12, Vol.30 (12), p.2759-2774
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_2314391216
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytics
Automatic pilots
Cloud computing
Computation offloading
Computational modeling
Computer simulation
Data management
Distributed algorithms
Domains
Edge computing
Energy consumption
Game theory
Industrial applications
industrial IoT
Internet of Things
Provisioning
Quality of service
Servers
Smart grid
Task analysis
title Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Hop%20Cooperative%20Computation%20Offloading%20for%20Industrial%20IoT-Edge-Cloud%20Computing%20Environments&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Hong,%20Zicong&rft.date=2019-12-01&rft.volume=30&rft.issue=12&rft.spage=2759&rft.epage=2774&rft.pages=2759-2774&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2926979&rft_dat=%3Cproquest_RIE%3E2314391216%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314391216&rft_id=info:pmid/&rft_ieee_id=8756083&rfr_iscdi=true