A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property
In this work, we investigate numerical solutions of the two-dimensional shallow water wave using a fully nonlinear Green-Naghdi model with an improved dispersive effect. For numerics, the Green-Naghdi model is rewritten into a formulation coupling a pseudo-conservative system and a set of pseudo-ell...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2019-12, Vol.399, p.108953, Article 108953 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108953 |
container_title | Journal of computational physics |
container_volume | 399 |
creator | Li, Maojun Xu, Liwei Cheng, Yongping |
description | In this work, we investigate numerical solutions of the two-dimensional shallow water wave using a fully nonlinear Green-Naghdi model with an improved dispersive effect. For numerics, the Green-Naghdi model is rewritten into a formulation coupling a pseudo-conservative system and a set of pseudo-elliptic equations. Since the pseudo-conservative system is no longer hyperbolic and its Riemann problem can only be approximately solved, we consider the utilization of the central discontinuous Galerkin method, which possesses an important feature of the needlessness of Riemann solvers. Meanwhile, the stationary elliptic part will be solved using the finite element method. Both the well-balanced and the positivity-preserving features, which are highly desirable in the simulation of the shallow water wave, will be embedded into the proposed numerical scheme. The accuracy and efficiency of the numerical model and method will be illustrated through numerical tests.
•A 2D modified Green-Naghdi model with enhanced dispersive property is derived.•A 2D numerical model is presented to reformulate the modified Green-Naghdi model.•A positivity-preserving well balanced CDG-FE method is presented for the model.•The presented method is a high order Galerkin scheme and free of Riemann solver.•A wide range of numerical tests demonstrate the numerical model and scheme. |
doi_str_mv | 10.1016/j.jcp.2019.108953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314297313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119306588</els_id><sourcerecordid>2314297313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-88e6cc8600e3e065280347462b0507d8e93e0dcd306d87ab96e8b09d17a7ee1c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU4Zx3nYYlUVWpAq2MDapPaUOGrjYKet-ve4hDWreejeeRxCbhlMGLDivpk0upukwGSshcz5GRkxkJCkJSvOyQggZYmUkl2SqxAaABB5Jkbkc0pnj4tk_kS32NfO0LXztK-R9geXGLvFNljXVhu68Iht8lp91cbSrTO4oQfb179abOuq1WiosaFDH-weaeddTPvjNblYV5uAN39xTD7mT--z52T5tniZTZeJ5mneJ0JgobUoAJAjFHkqgGdlVqQryKE0AmVsG204FEaU1UoWKFYgDSurEpFpPiZ3w9y4-HuHoVeN2_l4eVApZ1kqS854VLFBpb0LweNadd5uK39UDNQJpGpUBKlOINUAMnoeBg_G8_cWvQra4ulf61H3yjj7j_sHMB56Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314297313</pqid></control><display><type>article</type><title>A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Maojun ; Xu, Liwei ; Cheng, Yongping</creator><creatorcontrib>Li, Maojun ; Xu, Liwei ; Cheng, Yongping</creatorcontrib><description>In this work, we investigate numerical solutions of the two-dimensional shallow water wave using a fully nonlinear Green-Naghdi model with an improved dispersive effect. For numerics, the Green-Naghdi model is rewritten into a formulation coupling a pseudo-conservative system and a set of pseudo-elliptic equations. Since the pseudo-conservative system is no longer hyperbolic and its Riemann problem can only be approximately solved, we consider the utilization of the central discontinuous Galerkin method, which possesses an important feature of the needlessness of Riemann solvers. Meanwhile, the stationary elliptic part will be solved using the finite element method. Both the well-balanced and the positivity-preserving features, which are highly desirable in the simulation of the shallow water wave, will be embedded into the proposed numerical scheme. The accuracy and efficiency of the numerical model and method will be illustrated through numerical tests.
•A 2D modified Green-Naghdi model with enhanced dispersive property is derived.•A 2D numerical model is presented to reformulate the modified Green-Naghdi model.•A positivity-preserving well balanced CDG-FE method is presented for the model.•The presented method is a high order Galerkin scheme and free of Riemann solver.•A wide range of numerical tests demonstrate the numerical model and scheme.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.108953</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Central discontinuous Galerkin method ; Computational physics ; Computer simulation ; Elliptic functions ; Enhanced dispersive property ; Finite element method ; Galerkin method ; Green-Naghdi model ; Model accuracy ; Numerical models ; Positivity-preserving property ; Riemann solver ; Shallow water ; Two dimensional models ; Water waves ; Well-balanced scheme</subject><ispartof>Journal of computational physics, 2019-12, Vol.399, p.108953, Article 108953</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-88e6cc8600e3e065280347462b0507d8e93e0dcd306d87ab96e8b09d17a7ee1c3</citedby><cites>FETCH-LOGICAL-c325t-88e6cc8600e3e065280347462b0507d8e93e0dcd306d87ab96e8b09d17a7ee1c3</cites><orcidid>0000-0001-7016-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.108953$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Li, Maojun</creatorcontrib><creatorcontrib>Xu, Liwei</creatorcontrib><creatorcontrib>Cheng, Yongping</creatorcontrib><title>A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property</title><title>Journal of computational physics</title><description>In this work, we investigate numerical solutions of the two-dimensional shallow water wave using a fully nonlinear Green-Naghdi model with an improved dispersive effect. For numerics, the Green-Naghdi model is rewritten into a formulation coupling a pseudo-conservative system and a set of pseudo-elliptic equations. Since the pseudo-conservative system is no longer hyperbolic and its Riemann problem can only be approximately solved, we consider the utilization of the central discontinuous Galerkin method, which possesses an important feature of the needlessness of Riemann solvers. Meanwhile, the stationary elliptic part will be solved using the finite element method. Both the well-balanced and the positivity-preserving features, which are highly desirable in the simulation of the shallow water wave, will be embedded into the proposed numerical scheme. The accuracy and efficiency of the numerical model and method will be illustrated through numerical tests.
•A 2D modified Green-Naghdi model with enhanced dispersive property is derived.•A 2D numerical model is presented to reformulate the modified Green-Naghdi model.•A positivity-preserving well balanced CDG-FE method is presented for the model.•The presented method is a high order Galerkin scheme and free of Riemann solver.•A wide range of numerical tests demonstrate the numerical model and scheme.</description><subject>Central discontinuous Galerkin method</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Elliptic functions</subject><subject>Enhanced dispersive property</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Green-Naghdi model</subject><subject>Model accuracy</subject><subject>Numerical models</subject><subject>Positivity-preserving property</subject><subject>Riemann solver</subject><subject>Shallow water</subject><subject>Two dimensional models</subject><subject>Water waves</subject><subject>Well-balanced scheme</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU4Zx3nYYlUVWpAq2MDapPaUOGrjYKet-ve4hDWreejeeRxCbhlMGLDivpk0upukwGSshcz5GRkxkJCkJSvOyQggZYmUkl2SqxAaABB5Jkbkc0pnj4tk_kS32NfO0LXztK-R9geXGLvFNljXVhu68Iht8lp91cbSrTO4oQfb179abOuq1WiosaFDH-weaeddTPvjNblYV5uAN39xTD7mT--z52T5tniZTZeJ5mneJ0JgobUoAJAjFHkqgGdlVqQryKE0AmVsG204FEaU1UoWKFYgDSurEpFpPiZ3w9y4-HuHoVeN2_l4eVApZ1kqS854VLFBpb0LweNadd5uK39UDNQJpGpUBKlOINUAMnoeBg_G8_cWvQra4ulf61H3yjj7j_sHMB56Pw</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Li, Maojun</creator><creator>Xu, Liwei</creator><creator>Cheng, Yongping</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7016-7963</orcidid></search><sort><creationdate>20191215</creationdate><title>A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property</title><author>Li, Maojun ; Xu, Liwei ; Cheng, Yongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-88e6cc8600e3e065280347462b0507d8e93e0dcd306d87ab96e8b09d17a7ee1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Central discontinuous Galerkin method</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Elliptic functions</topic><topic>Enhanced dispersive property</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Green-Naghdi model</topic><topic>Model accuracy</topic><topic>Numerical models</topic><topic>Positivity-preserving property</topic><topic>Riemann solver</topic><topic>Shallow water</topic><topic>Two dimensional models</topic><topic>Water waves</topic><topic>Well-balanced scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Maojun</creatorcontrib><creatorcontrib>Xu, Liwei</creatorcontrib><creatorcontrib>Cheng, Yongping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Maojun</au><au>Xu, Liwei</au><au>Cheng, Yongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property</atitle><jtitle>Journal of computational physics</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>399</volume><spage>108953</spage><pages>108953-</pages><artnum>108953</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this work, we investigate numerical solutions of the two-dimensional shallow water wave using a fully nonlinear Green-Naghdi model with an improved dispersive effect. For numerics, the Green-Naghdi model is rewritten into a formulation coupling a pseudo-conservative system and a set of pseudo-elliptic equations. Since the pseudo-conservative system is no longer hyperbolic and its Riemann problem can only be approximately solved, we consider the utilization of the central discontinuous Galerkin method, which possesses an important feature of the needlessness of Riemann solvers. Meanwhile, the stationary elliptic part will be solved using the finite element method. Both the well-balanced and the positivity-preserving features, which are highly desirable in the simulation of the shallow water wave, will be embedded into the proposed numerical scheme. The accuracy and efficiency of the numerical model and method will be illustrated through numerical tests.
•A 2D modified Green-Naghdi model with enhanced dispersive property is derived.•A 2D numerical model is presented to reformulate the modified Green-Naghdi model.•A positivity-preserving well balanced CDG-FE method is presented for the model.•The presented method is a high order Galerkin scheme and free of Riemann solver.•A wide range of numerical tests demonstrate the numerical model and scheme.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.108953</doi><orcidid>https://orcid.org/0000-0001-7016-7963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2019-12, Vol.399, p.108953, Article 108953 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2314297313 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Central discontinuous Galerkin method Computational physics Computer simulation Elliptic functions Enhanced dispersive property Finite element method Galerkin method Green-Naghdi model Model accuracy Numerical models Positivity-preserving property Riemann solver Shallow water Two dimensional models Water waves Well-balanced scheme |
title | A CDG-FE method for the two-dimensional Green-Naghdi model with the enhanced dispersive property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CDG-FE%20method%20for%20the%20two-dimensional%20Green-Naghdi%20model%20with%20the%20enhanced%20dispersive%20property&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Li,%20Maojun&rft.date=2019-12-15&rft.volume=399&rft.spage=108953&rft.pages=108953-&rft.artnum=108953&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.108953&rft_dat=%3Cproquest_cross%3E2314297313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314297313&rft_id=info:pmid/&rft_els_id=S0021999119306588&rfr_iscdi=true |