Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model
Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consi...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2019-12, Vol.399, p.108959, Article 108959 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108959 |
container_title | Journal of computational physics |
container_volume | 399 |
creator | Bonart, Henning Kahle, Christian Repke, Jens-Uwe |
description | Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet. |
doi_str_mv | 10.1016/j.jcp.2019.108959 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314292273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119306643</els_id><sourcerecordid>2314292273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</originalsourceid><addsrcrecordid>eNp9UMtuFDEQtCKQsgQ-gJulnGdje55WTtEKCFIUDsDZ6rF7E0889mJ7I-2NX0D8Yb4Ej4ZzTq3urqruKkI-crbljHdX03bSh61gXJZ-kK08IxvOJKtEz7s3ZMOY4JWUkp-TdylNjLGhbYYN-bML8wGiTcHTsKfoMT6caMowOqTJzkcH2a67OTxb_0B18Bl0ps56pIcYCnBO9JiWHdD8iHEO5uRhthqcOy34ZFNGn-kOHv3L77-31jkL0dB7eLYYy-R7Dk-YygWD7j15uweX8MP_ekF-fv70Y3db3X378nV3c1fpWrS54qi7VvS17OXYtzD2g0FtDLIeRwTGeS-6tkZeD2hMIzqUbdtJ2QCMtW5qqC_I5apbPPw6YspqCsfoy0klat4IKYp6QfEVpWNIKeJeHaKdIZ4UZ2pJXk2qJK-W5NWafOFcrxws7y8OVdIWvUZjI-qsTLCvsP8BRYWRQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314292273</pqid></control><display><type>article</type><title>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</title><source>Elsevier ScienceDirect Journals</source><creator>Bonart, Henning ; Kahle, Christian ; Repke, Jens-Uwe</creator><creatorcontrib>Bonart, Henning ; Kahle, Christian ; Repke, Jens-Uwe</creatorcontrib><description>Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.108959</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Contact angle ; Contact line dynamics ; Drinking water ; Drop phenomena ; Droplets ; Fluid flow ; Mathematical models ; Multiphase flows ; Navier-Stokes equations ; Phase field modeling ; Raindrops ; Sliding ; Solid surfaces</subject><ispartof>Journal of computational physics, 2019-12, Vol.399, p.108959, Article 108959</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</citedby><cites>FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</cites><orcidid>0000-0002-5026-4499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999119306643$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bonart, Henning</creatorcontrib><creatorcontrib>Kahle, Christian</creatorcontrib><creatorcontrib>Repke, Jens-Uwe</creatorcontrib><title>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</title><title>Journal of computational physics</title><description>Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Contact line dynamics</subject><subject>Drinking water</subject><subject>Drop phenomena</subject><subject>Droplets</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Multiphase flows</subject><subject>Navier-Stokes equations</subject><subject>Phase field modeling</subject><subject>Raindrops</subject><subject>Sliding</subject><subject>Solid surfaces</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtuFDEQtCKQsgQ-gJulnGdje55WTtEKCFIUDsDZ6rF7E0889mJ7I-2NX0D8Yb4Ej4ZzTq3urqruKkI-crbljHdX03bSh61gXJZ-kK08IxvOJKtEz7s3ZMOY4JWUkp-TdylNjLGhbYYN-bML8wGiTcHTsKfoMT6caMowOqTJzkcH2a67OTxb_0B18Bl0ps56pIcYCnBO9JiWHdD8iHEO5uRhthqcOy34ZFNGn-kOHv3L77-31jkL0dB7eLYYy-R7Dk-YygWD7j15uweX8MP_ekF-fv70Y3db3X378nV3c1fpWrS54qi7VvS17OXYtzD2g0FtDLIeRwTGeS-6tkZeD2hMIzqUbdtJ2QCMtW5qqC_I5apbPPw6YspqCsfoy0klat4IKYp6QfEVpWNIKeJeHaKdIZ4UZ2pJXk2qJK-W5NWafOFcrxws7y8OVdIWvUZjI-qsTLCvsP8BRYWRQw</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Bonart, Henning</creator><creator>Kahle, Christian</creator><creator>Repke, Jens-Uwe</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5026-4499</orcidid></search><sort><creationdate>20191215</creationdate><title>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</title><author>Bonart, Henning ; Kahle, Christian ; Repke, Jens-Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Contact line dynamics</topic><topic>Drinking water</topic><topic>Drop phenomena</topic><topic>Droplets</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Multiphase flows</topic><topic>Navier-Stokes equations</topic><topic>Phase field modeling</topic><topic>Raindrops</topic><topic>Sliding</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonart, Henning</creatorcontrib><creatorcontrib>Kahle, Christian</creatorcontrib><creatorcontrib>Repke, Jens-Uwe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonart, Henning</au><au>Kahle, Christian</au><au>Repke, Jens-Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</atitle><jtitle>Journal of computational physics</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>399</volume><spage>108959</spage><pages>108959-</pages><artnum>108959</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.108959</doi><orcidid>https://orcid.org/0000-0002-5026-4499</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2019-12, Vol.399, p.108959, Article 108959 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2314292273 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary conditions Computational fluid dynamics Computational physics Computer simulation Contact angle Contact line dynamics Drinking water Drop phenomena Droplets Fluid flow Mathematical models Multiphase flows Navier-Stokes equations Phase field modeling Raindrops Sliding Solid surfaces |
title | Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20energy%20stable%20simulation%20of%20moving%20contact%20line%20problems%20using%20a%20thermodynamically%20consistent%20Cahn%E2%80%93Hilliard%20Navier%E2%80%93Stokes%20model&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Bonart,%20Henning&rft.date=2019-12-15&rft.volume=399&rft.spage=108959&rft.pages=108959-&rft.artnum=108959&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.108959&rft_dat=%3Cproquest_cross%3E2314292273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314292273&rft_id=info:pmid/&rft_els_id=S0021999119306643&rfr_iscdi=true |