Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model

Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-12, Vol.399, p.108959, Article 108959
Hauptverfasser: Bonart, Henning, Kahle, Christian, Repke, Jens-Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108959
container_title Journal of computational physics
container_volume 399
creator Bonart, Henning
Kahle, Christian
Repke, Jens-Uwe
description Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.
doi_str_mv 10.1016/j.jcp.2019.108959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314292273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119306643</els_id><sourcerecordid>2314292273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</originalsourceid><addsrcrecordid>eNp9UMtuFDEQtCKQsgQ-gJulnGdje55WTtEKCFIUDsDZ6rF7E0889mJ7I-2NX0D8Yb4Ej4ZzTq3urqruKkI-crbljHdX03bSh61gXJZ-kK08IxvOJKtEz7s3ZMOY4JWUkp-TdylNjLGhbYYN-bML8wGiTcHTsKfoMT6caMowOqTJzkcH2a67OTxb_0B18Bl0ps56pIcYCnBO9JiWHdD8iHEO5uRhthqcOy34ZFNGn-kOHv3L77-31jkL0dB7eLYYy-R7Dk-YygWD7j15uweX8MP_ekF-fv70Y3db3X378nV3c1fpWrS54qi7VvS17OXYtzD2g0FtDLIeRwTGeS-6tkZeD2hMIzqUbdtJ2QCMtW5qqC_I5apbPPw6YspqCsfoy0klat4IKYp6QfEVpWNIKeJeHaKdIZ4UZ2pJXk2qJK-W5NWafOFcrxws7y8OVdIWvUZjI-qsTLCvsP8BRYWRQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314292273</pqid></control><display><type>article</type><title>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</title><source>Elsevier ScienceDirect Journals</source><creator>Bonart, Henning ; Kahle, Christian ; Repke, Jens-Uwe</creator><creatorcontrib>Bonart, Henning ; Kahle, Christian ; Repke, Jens-Uwe</creatorcontrib><description>Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.108959</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Contact angle ; Contact line dynamics ; Drinking water ; Drop phenomena ; Droplets ; Fluid flow ; Mathematical models ; Multiphase flows ; Navier-Stokes equations ; Phase field modeling ; Raindrops ; Sliding ; Solid surfaces</subject><ispartof>Journal of computational physics, 2019-12, Vol.399, p.108959, Article 108959</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</citedby><cites>FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</cites><orcidid>0000-0002-5026-4499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999119306643$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bonart, Henning</creatorcontrib><creatorcontrib>Kahle, Christian</creatorcontrib><creatorcontrib>Repke, Jens-Uwe</creatorcontrib><title>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</title><title>Journal of computational physics</title><description>Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Contact line dynamics</subject><subject>Drinking water</subject><subject>Drop phenomena</subject><subject>Droplets</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Multiphase flows</subject><subject>Navier-Stokes equations</subject><subject>Phase field modeling</subject><subject>Raindrops</subject><subject>Sliding</subject><subject>Solid surfaces</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtuFDEQtCKQsgQ-gJulnGdje55WTtEKCFIUDsDZ6rF7E0889mJ7I-2NX0D8Yb4Ej4ZzTq3urqruKkI-crbljHdX03bSh61gXJZ-kK08IxvOJKtEz7s3ZMOY4JWUkp-TdylNjLGhbYYN-bML8wGiTcHTsKfoMT6caMowOqTJzkcH2a67OTxb_0B18Bl0ps56pIcYCnBO9JiWHdD8iHEO5uRhthqcOy34ZFNGn-kOHv3L77-31jkL0dB7eLYYy-R7Dk-YygWD7j15uweX8MP_ekF-fv70Y3db3X378nV3c1fpWrS54qi7VvS17OXYtzD2g0FtDLIeRwTGeS-6tkZeD2hMIzqUbdtJ2QCMtW5qqC_I5apbPPw6YspqCsfoy0klat4IKYp6QfEVpWNIKeJeHaKdIZ4UZ2pJXk2qJK-W5NWafOFcrxws7y8OVdIWvUZjI-qsTLCvsP8BRYWRQw</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Bonart, Henning</creator><creator>Kahle, Christian</creator><creator>Repke, Jens-Uwe</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5026-4499</orcidid></search><sort><creationdate>20191215</creationdate><title>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</title><author>Bonart, Henning ; Kahle, Christian ; Repke, Jens-Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1ec65273979b75ab78decdde07ebea01172653e138edd426e9556994aab3c43a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Contact line dynamics</topic><topic>Drinking water</topic><topic>Drop phenomena</topic><topic>Droplets</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Multiphase flows</topic><topic>Navier-Stokes equations</topic><topic>Phase field modeling</topic><topic>Raindrops</topic><topic>Sliding</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonart, Henning</creatorcontrib><creatorcontrib>Kahle, Christian</creatorcontrib><creatorcontrib>Repke, Jens-Uwe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonart, Henning</au><au>Kahle, Christian</au><au>Repke, Jens-Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model</atitle><jtitle>Journal of computational physics</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>399</volume><spage>108959</spage><pages>108959-</pages><artnum>108959</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Liquid droplets sliding along solid surfaces are a frequently observed phenomenon in nature, e.g., raindrops on a leaf, and in everyday situations, e.g., drops of water in a drinking glass. To model this situation, we use a phase field approach. The bulk model is given by the thermodynamically consistent Cahn–Hilliard Navier–Stokes model from Abels et al. (2012) [8]. To model the contact line dynamics we apply the generalized Navier boundary condition for the fluid and the dynamically advected boundary contact angle condition for the phase field as derived in Qian et al. (2006) [7]. In recent years several schemes were proposed to solve this model numerically. While they widely differ in terms of complexity, they all fulfill certain basic properties when it comes to thermodynamic consistency. However, an accurate comparison of the influence of the schemes on the moving contact line is rarely found. Therefore, we thoughtfully compare the quality of the numerical results obtained with three different schemes and two different bulk energy potentials. Especially, we discuss the influence of the different schemes on the apparent contact angles of a sliding droplet.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.108959</doi><orcidid>https://orcid.org/0000-0002-5026-4499</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-12, Vol.399, p.108959, Article 108959
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2314292273
source Elsevier ScienceDirect Journals
subjects Boundary conditions
Computational fluid dynamics
Computational physics
Computer simulation
Contact angle
Contact line dynamics
Drinking water
Drop phenomena
Droplets
Fluid flow
Mathematical models
Multiphase flows
Navier-Stokes equations
Phase field modeling
Raindrops
Sliding
Solid surfaces
title Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20energy%20stable%20simulation%20of%20moving%20contact%20line%20problems%20using%20a%20thermodynamically%20consistent%20Cahn%E2%80%93Hilliard%20Navier%E2%80%93Stokes%20model&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Bonart,%20Henning&rft.date=2019-12-15&rft.volume=399&rft.spage=108959&rft.pages=108959-&rft.artnum=108959&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.108959&rft_dat=%3Cproquest_cross%3E2314292273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314292273&rft_id=info:pmid/&rft_els_id=S0021999119306643&rfr_iscdi=true