Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method
•Developing a combined scheme for 3D transient heat conduction in FGMs.•The method is accurate and stable in long-time simulations.•Large time step-sizes can be used in temporal discretization.•A large-scale simulation with almost 100,000 degree of freedoms is performed. A hybrid numerical method is...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2019-12, Vol.145, p.118771, Article 118771 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118771 |
container_title | International journal of heat and mass transfer |
container_volume | 145 |
creator | Qu, Wenzhen Fan, Chia-Ming Zhang, Yaoming |
description | •Developing a combined scheme for 3D transient heat conduction in FGMs.•The method is accurate and stable in long-time simulations.•Large time step-sizes can be used in temporal discretization.•A large-scale simulation with almost 100,000 degree of freedoms is performed.
A hybrid numerical method is developed for three-dimensional (3D) heat conduction in functionally graded materials (FGMs) by integrating the advantages of the generalized finite difference method (GFDM) and Krylov deferred correction (KDC) technique. The temporal direction of the problems is first discretized by applying the KDC approach for high-accuracy results, which yields a partial differential equation (PDE) boundary value problem at each time step. The corresponding PDE boundary value problem is then solved by introducing the meshless GFDM that has no requirement of time-consuming meshing generation and numerical integration for 3D problems with complex geometries. Numerical experiments with four types of material gradations are provided to verify the developed combination scheme, and numerical results demonstrate that the method has a great potential for 3D transient heat conduction in FGMs especially for those in a long-time simulation. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2019.118771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314288824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019326808</els_id><sourcerecordid>2314288824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-72d4e7589f999c7855be8dacc1c3579bf46a6587a79dad56d0ca391b512d2c4f3</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhYnRxFr9DyRu3EyFeQE7m8ZnmrjRNWHgTsukw7TAmMy_l1p3blwd4Jx893IQuqNkQQmt77uF7bagYq9CiF650IJf5ISKBaWcMXqGZklFllMuztGMEMoyUVByia5C6I5XUtYzdFg6tZuCDXhocdx6gMzYHlywQzLwcQLWgzOjjukFW4fb0f2c1W434Y1XBgzuVQRv1S7gZsJjsG6DFd5OjbcGu7FPnk6wHuJ2MNfook1JuPnVOfp8evxYvWTr9-fX1XKd6ZKwmLHclMAqLlohhGa8qhrgRmlNdVEx0bRlreqKM8WEUaaqDdGqELSpaG5yXbbFHN2euHs_HEYIUXbD6NPaQeYFLXPOeV6m1MMppf0QgodW7r3tlZ8kJfJYtOzk36LlsWh5Kjoh3k4ISL_5sskN2oLTYKwHHaUZ7P9h31Rclg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314288824</pqid></control><display><type>article</type><title>Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qu, Wenzhen ; Fan, Chia-Ming ; Zhang, Yaoming</creator><creatorcontrib>Qu, Wenzhen ; Fan, Chia-Ming ; Zhang, Yaoming</creatorcontrib><description>•Developing a combined scheme for 3D transient heat conduction in FGMs.•The method is accurate and stable in long-time simulations.•Large time step-sizes can be used in temporal discretization.•A large-scale simulation with almost 100,000 degree of freedoms is performed.
A hybrid numerical method is developed for three-dimensional (3D) heat conduction in functionally graded materials (FGMs) by integrating the advantages of the generalized finite difference method (GFDM) and Krylov deferred correction (KDC) technique. The temporal direction of the problems is first discretized by applying the KDC approach for high-accuracy results, which yields a partial differential equation (PDE) boundary value problem at each time step. The corresponding PDE boundary value problem is then solved by introducing the meshless GFDM that has no requirement of time-consuming meshing generation and numerical integration for 3D problems with complex geometries. Numerical experiments with four types of material gradations are provided to verify the developed combination scheme, and numerical results demonstrate that the method has a great potential for 3D transient heat conduction in FGMs especially for those in a long-time simulation.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.118771</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D heat conduction ; Boundary value problems ; Computer simulation ; Conduction heating ; Conductive heat transfer ; Finite difference method ; Functionally graded materials ; Functionally gradient materials ; Generalized finite difference method ; Krylov deferred correction method ; Long-time simulation ; Meshing ; Meshless methods ; Numerical analysis ; Numerical integration ; Numerical methods ; Partial differential equations ; Three dimensional analysis ; Transient heat conduction</subject><ispartof>International journal of heat and mass transfer, 2019-12, Vol.145, p.118771, Article 118771</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-72d4e7589f999c7855be8dacc1c3579bf46a6587a79dad56d0ca391b512d2c4f3</citedby><cites>FETCH-LOGICAL-c407t-72d4e7589f999c7855be8dacc1c3579bf46a6587a79dad56d0ca391b512d2c4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118771$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Qu, Wenzhen</creatorcontrib><creatorcontrib>Fan, Chia-Ming</creatorcontrib><creatorcontrib>Zhang, Yaoming</creatorcontrib><title>Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method</title><title>International journal of heat and mass transfer</title><description>•Developing a combined scheme for 3D transient heat conduction in FGMs.•The method is accurate and stable in long-time simulations.•Large time step-sizes can be used in temporal discretization.•A large-scale simulation with almost 100,000 degree of freedoms is performed.
A hybrid numerical method is developed for three-dimensional (3D) heat conduction in functionally graded materials (FGMs) by integrating the advantages of the generalized finite difference method (GFDM) and Krylov deferred correction (KDC) technique. The temporal direction of the problems is first discretized by applying the KDC approach for high-accuracy results, which yields a partial differential equation (PDE) boundary value problem at each time step. The corresponding PDE boundary value problem is then solved by introducing the meshless GFDM that has no requirement of time-consuming meshing generation and numerical integration for 3D problems with complex geometries. Numerical experiments with four types of material gradations are provided to verify the developed combination scheme, and numerical results demonstrate that the method has a great potential for 3D transient heat conduction in FGMs especially for those in a long-time simulation.</description><subject>3D heat conduction</subject><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Finite difference method</subject><subject>Functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>Generalized finite difference method</subject><subject>Krylov deferred correction method</subject><subject>Long-time simulation</subject><subject>Meshing</subject><subject>Meshless methods</subject><subject>Numerical analysis</subject><subject>Numerical integration</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Three dimensional analysis</subject><subject>Transient heat conduction</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPAyEUhYnRxFr9DyRu3EyFeQE7m8ZnmrjRNWHgTsukw7TAmMy_l1p3blwd4Jx893IQuqNkQQmt77uF7bagYq9CiF650IJf5ISKBaWcMXqGZklFllMuztGMEMoyUVByia5C6I5XUtYzdFg6tZuCDXhocdx6gMzYHlywQzLwcQLWgzOjjukFW4fb0f2c1W434Y1XBgzuVQRv1S7gZsJjsG6DFd5OjbcGu7FPnk6wHuJ2MNfook1JuPnVOfp8evxYvWTr9-fX1XKd6ZKwmLHclMAqLlohhGa8qhrgRmlNdVEx0bRlreqKM8WEUaaqDdGqELSpaG5yXbbFHN2euHs_HEYIUXbD6NPaQeYFLXPOeV6m1MMppf0QgodW7r3tlZ8kJfJYtOzk36LlsWh5Kjoh3k4ISL_5sskN2oLTYKwHHaUZ7P9h31Rclg8</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Qu, Wenzhen</creator><creator>Fan, Chia-Ming</creator><creator>Zhang, Yaoming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20191201</creationdate><title>Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method</title><author>Qu, Wenzhen ; Fan, Chia-Ming ; Zhang, Yaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-72d4e7589f999c7855be8dacc1c3579bf46a6587a79dad56d0ca391b512d2c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D heat conduction</topic><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Finite difference method</topic><topic>Functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>Generalized finite difference method</topic><topic>Krylov deferred correction method</topic><topic>Long-time simulation</topic><topic>Meshing</topic><topic>Meshless methods</topic><topic>Numerical analysis</topic><topic>Numerical integration</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Three dimensional analysis</topic><topic>Transient heat conduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Wenzhen</creatorcontrib><creatorcontrib>Fan, Chia-Ming</creatorcontrib><creatorcontrib>Zhang, Yaoming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Wenzhen</au><au>Fan, Chia-Ming</au><au>Zhang, Yaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>145</volume><spage>118771</spage><pages>118771-</pages><artnum>118771</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Developing a combined scheme for 3D transient heat conduction in FGMs.•The method is accurate and stable in long-time simulations.•Large time step-sizes can be used in temporal discretization.•A large-scale simulation with almost 100,000 degree of freedoms is performed.
A hybrid numerical method is developed for three-dimensional (3D) heat conduction in functionally graded materials (FGMs) by integrating the advantages of the generalized finite difference method (GFDM) and Krylov deferred correction (KDC) technique. The temporal direction of the problems is first discretized by applying the KDC approach for high-accuracy results, which yields a partial differential equation (PDE) boundary value problem at each time step. The corresponding PDE boundary value problem is then solved by introducing the meshless GFDM that has no requirement of time-consuming meshing generation and numerical integration for 3D problems with complex geometries. Numerical experiments with four types of material gradations are provided to verify the developed combination scheme, and numerical results demonstrate that the method has a great potential for 3D transient heat conduction in FGMs especially for those in a long-time simulation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.118771</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2019-12, Vol.145, p.118771, Article 118771 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2314288824 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 3D heat conduction Boundary value problems Computer simulation Conduction heating Conductive heat transfer Finite difference method Functionally graded materials Functionally gradient materials Generalized finite difference method Krylov deferred correction method Long-time simulation Meshing Meshless methods Numerical analysis Numerical integration Numerical methods Partial differential equations Three dimensional analysis Transient heat conduction |
title | Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20three-dimensional%20heat%20conduction%20in%20functionally%20graded%20materials%20by%20using%20a%20hybrid%20numerical%20method&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Qu,%20Wenzhen&rft.date=2019-12-01&rft.volume=145&rft.spage=118771&rft.pages=118771-&rft.artnum=118771&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.118771&rft_dat=%3Cproquest_cross%3E2314288824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314288824&rft_id=info:pmid/&rft_els_id=S0017931019326808&rfr_iscdi=true |