Structure-preserving connections on almost complex Norden golden manifolds

An almost complex Norden golden structure ( G c , g ) on a manifold is given by a tensor field G c of type (1, 1) satisfying the complex golden section relation G c 2 = G c - 3 2 Id , and a pure pseudo-Riemannian metric g , i.e., a metric satisfying g ( G c X , Y ) = g ( X , G c Y ) . In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2019-12, Vol.110 (3), p.1-20, Article 55
Hauptverfasser: Zhong, Shiping, Zhao, Zehui, Mu, Gui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 3
container_start_page 1
container_title Journal of geometry
container_volume 110
creator Zhong, Shiping
Zhao, Zehui
Mu, Gui
description An almost complex Norden golden structure ( G c , g ) on a manifold is given by a tensor field G c of type (1, 1) satisfying the complex golden section relation G c 2 = G c - 3 2 Id , and a pure pseudo-Riemannian metric g , i.e., a metric satisfying g ( G c X , Y ) = g ( X , G c Y ) . In this paper some structure-preserving connections including twin Norden golden metric-preserving connections, G c -metric-preserving connections, G c -preserving connections are studied. Twin Norden golden metric-preserving connections could be completed specifying those conditions. Also G c -metric-preserving connections are analyzed and we show that every Kähler–Norden–Codazzi golden manifold is a Kähler–Norden golden manifold, a consequence many of results in Bilen et al. (Int J Geom Methods Mod Phys 15(5):1850080, 2018) could be simplified. Finally, G c -preserving connections are investigated and we show that G c -preserving connections are determined by the skew-symmetry and pureness of an associated 3-tensor.
doi_str_mv 10.1007/s00022-019-0511-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314280299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314280299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-117faeec87d87edc56e24ceab06da2b3042dc13c0f30bce2b70b02882c6c90533</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJ0m3SoyzqKose1HNI0-nSpU1q0or-e7NU8OTpDcP33jCPkEsG1wxA3kQA4JwCKymsGKPsiCxYzoGqspTHZAGQS8rzQp2Ssxj3iRa8KBfk6XUMkx2ngHQIGDF8tm6XWe8c2rH1LmbeZabrfRzTth86_MqefajRZTvfHaQ3rm3SGM_JSWO6iBe_uiTv93dv6w3dvjw8rm-31ApWjJQx2RhEq2StJNZ2VSDPLZoKitrwSkDOa8uEhUZAZZFXEirgSnFb2BJWQizJ1Zw7BP8xYRz13k_BpZOai_SzAl6WiWIzZYOPMWCjh9D2JnxrBvpQmZ4r06kyfahMs-Thsycm1u0w_CX_b_oBWGFveg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314280299</pqid></control><display><type>article</type><title>Structure-preserving connections on almost complex Norden golden manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhong, Shiping ; Zhao, Zehui ; Mu, Gui</creator><creatorcontrib>Zhong, Shiping ; Zhao, Zehui ; Mu, Gui</creatorcontrib><description>An almost complex Norden golden structure ( G c , g ) on a manifold is given by a tensor field G c of type (1, 1) satisfying the complex golden section relation G c 2 = G c - 3 2 Id , and a pure pseudo-Riemannian metric g , i.e., a metric satisfying g ( G c X , Y ) = g ( X , G c Y ) . In this paper some structure-preserving connections including twin Norden golden metric-preserving connections, G c -metric-preserving connections, G c -preserving connections are studied. Twin Norden golden metric-preserving connections could be completed specifying those conditions. Also G c -metric-preserving connections are analyzed and we show that every Kähler–Norden–Codazzi golden manifold is a Kähler–Norden golden manifold, a consequence many of results in Bilen et al. (Int J Geom Methods Mod Phys 15(5):1850080, 2018) could be simplified. Finally, G c -preserving connections are investigated and we show that G c -preserving connections are determined by the skew-symmetry and pureness of an associated 3-tensor.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-019-0511-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Geometry ; Manifolds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Tensors</subject><ispartof>Journal of geometry, 2019-12, Vol.110 (3), p.1-20, Article 55</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-117faeec87d87edc56e24ceab06da2b3042dc13c0f30bce2b70b02882c6c90533</citedby><cites>FETCH-LOGICAL-c316t-117faeec87d87edc56e24ceab06da2b3042dc13c0f30bce2b70b02882c6c90533</cites><orcidid>0000-0002-8158-8058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-019-0511-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-019-0511-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhong, Shiping</creatorcontrib><creatorcontrib>Zhao, Zehui</creatorcontrib><creatorcontrib>Mu, Gui</creatorcontrib><title>Structure-preserving connections on almost complex Norden golden manifolds</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>An almost complex Norden golden structure ( G c , g ) on a manifold is given by a tensor field G c of type (1, 1) satisfying the complex golden section relation G c 2 = G c - 3 2 Id , and a pure pseudo-Riemannian metric g , i.e., a metric satisfying g ( G c X , Y ) = g ( X , G c Y ) . In this paper some structure-preserving connections including twin Norden golden metric-preserving connections, G c -metric-preserving connections, G c -preserving connections are studied. Twin Norden golden metric-preserving connections could be completed specifying those conditions. Also G c -metric-preserving connections are analyzed and we show that every Kähler–Norden–Codazzi golden manifold is a Kähler–Norden golden manifold, a consequence many of results in Bilen et al. (Int J Geom Methods Mod Phys 15(5):1850080, 2018) could be simplified. Finally, G c -preserving connections are investigated and we show that G c -preserving connections are determined by the skew-symmetry and pureness of an associated 3-tensor.</description><subject>Geometry</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tensors</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJ0m3SoyzqKose1HNI0-nSpU1q0or-e7NU8OTpDcP33jCPkEsG1wxA3kQA4JwCKymsGKPsiCxYzoGqspTHZAGQS8rzQp2Ssxj3iRa8KBfk6XUMkx2ngHQIGDF8tm6XWe8c2rH1LmbeZabrfRzTth86_MqefajRZTvfHaQ3rm3SGM_JSWO6iBe_uiTv93dv6w3dvjw8rm-31ApWjJQx2RhEq2StJNZ2VSDPLZoKitrwSkDOa8uEhUZAZZFXEirgSnFb2BJWQizJ1Zw7BP8xYRz13k_BpZOai_SzAl6WiWIzZYOPMWCjh9D2JnxrBvpQmZ4r06kyfahMs-Thsycm1u0w_CX_b_oBWGFveg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zhong, Shiping</creator><creator>Zhao, Zehui</creator><creator>Mu, Gui</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8158-8058</orcidid></search><sort><creationdate>20191201</creationdate><title>Structure-preserving connections on almost complex Norden golden manifolds</title><author>Zhong, Shiping ; Zhao, Zehui ; Mu, Gui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-117faeec87d87edc56e24ceab06da2b3042dc13c0f30bce2b70b02882c6c90533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Geometry</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Shiping</creatorcontrib><creatorcontrib>Zhao, Zehui</creatorcontrib><creatorcontrib>Mu, Gui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Shiping</au><au>Zhao, Zehui</au><au>Mu, Gui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-preserving connections on almost complex Norden golden manifolds</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>110</volume><issue>3</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>55</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>An almost complex Norden golden structure ( G c , g ) on a manifold is given by a tensor field G c of type (1, 1) satisfying the complex golden section relation G c 2 = G c - 3 2 Id , and a pure pseudo-Riemannian metric g , i.e., a metric satisfying g ( G c X , Y ) = g ( X , G c Y ) . In this paper some structure-preserving connections including twin Norden golden metric-preserving connections, G c -metric-preserving connections, G c -preserving connections are studied. Twin Norden golden metric-preserving connections could be completed specifying those conditions. Also G c -metric-preserving connections are analyzed and we show that every Kähler–Norden–Codazzi golden manifold is a Kähler–Norden golden manifold, a consequence many of results in Bilen et al. (Int J Geom Methods Mod Phys 15(5):1850080, 2018) could be simplified. Finally, G c -preserving connections are investigated and we show that G c -preserving connections are determined by the skew-symmetry and pureness of an associated 3-tensor.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-019-0511-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8158-8058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0047-2468
ispartof Journal of geometry, 2019-12, Vol.110 (3), p.1-20, Article 55
issn 0047-2468
1420-8997
language eng
recordid cdi_proquest_journals_2314280299
source SpringerLink Journals - AutoHoldings
subjects Geometry
Manifolds
Mathematical analysis
Mathematics
Mathematics and Statistics
Tensors
title Structure-preserving connections on almost complex Norden golden manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-preserving%20connections%20on%20almost%20complex%20Norden%20golden%20manifolds&rft.jtitle=Journal%20of%20geometry&rft.au=Zhong,%20Shiping&rft.date=2019-12-01&rft.volume=110&rft.issue=3&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=55&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-019-0511-1&rft_dat=%3Cproquest_cross%3E2314280299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314280299&rft_id=info:pmid/&rfr_iscdi=true