A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency
We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate a...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2019-11, Vol.80 (11), p.2054-2067 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2067 |
---|---|
container_issue | 11 |
container_start_page | 2054 |
container_title | Automation and remote control |
container_volume | 80 |
creator | Zhukova, G. N. Ul’yanov, M. V. Fomichev, M. I. |
description | We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension. |
doi_str_mv | 10.1134/S0005117919110092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314280218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314280218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wge83Q3lGoFQaF1PWTyaFNmkppkxPkH_mwzVHAhru7lnu8cLgeAa4xuMabp3RohlGFcVLjCGKGKnIAZzlGZUETJKZhNcjLp5-DC-z1CkSJ0Br5quBpbpwVcfjIeYN1trdNh10NlHQw7CWs_9r0MTnO4cexDdtps4Zp10vfMwFdn207293BhjQ9u4EFbA5kRkMF1YEH7oDnr4j6IEVoVuf4wTII18bxUSnMtDR8vwZlinZdXP3MO3h6Wm8UqeX55fFrUzwmnOA9JQbOqlJxKRmRRpIxKIWhZopRmJeFK5TlFPOW8VLRFMhWcc4HbShQM4TYrKjoHN8fcg7Pvg_Sh2dvBxV98QyhOSYkILiOFjxR31nsnVXNwumdubDBqpsKbP4VHDzl6fGTNVrrf5P9N3-Bog-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314280218</pqid></control><display><type>article</type><title>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</title><source>SpringerNature Journals</source><creator>Zhukova, G. N. ; Ul’yanov, M. V. ; Fomichev, M. I.</creator><creatorcontrib>Zhukova, G. N. ; Ul’yanov, M. V. ; Fomichev, M. I.</creatorcontrib><description>We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117919110092</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Asymmetry ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Exact solutions ; Job shops ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Operations Research ; Optimization ; Robotics ; Statistical analysis ; System Analysis ; Systems Theory ; Traveling salesman problem</subject><ispartof>Automation and remote control, 2019-11, Vol.80 (11), p.2054-2067</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</citedby><cites>FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117919110092$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117919110092$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhukova, G. N.</creatorcontrib><creatorcontrib>Ul’yanov, M. V.</creatorcontrib><creatorcontrib>Fomichev, M. I.</creatorcontrib><title>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.</description><subject>Algorithms</subject><subject>Asymmetry</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Exact solutions</subject><subject>Job shops</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Operations Research</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>System Analysis</subject><subject>Systems Theory</subject><subject>Traveling salesman problem</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wge83Q3lGoFQaF1PWTyaFNmkppkxPkH_mwzVHAhru7lnu8cLgeAa4xuMabp3RohlGFcVLjCGKGKnIAZzlGZUETJKZhNcjLp5-DC-z1CkSJ0Br5quBpbpwVcfjIeYN1trdNh10NlHQw7CWs_9r0MTnO4cexDdtps4Zp10vfMwFdn207293BhjQ9u4EFbA5kRkMF1YEH7oDnr4j6IEVoVuf4wTII18bxUSnMtDR8vwZlinZdXP3MO3h6Wm8UqeX55fFrUzwmnOA9JQbOqlJxKRmRRpIxKIWhZopRmJeFK5TlFPOW8VLRFMhWcc4HbShQM4TYrKjoHN8fcg7Pvg_Sh2dvBxV98QyhOSYkILiOFjxR31nsnVXNwumdubDBqpsKbP4VHDzl6fGTNVrrf5P9N3-Bog-w</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhukova, G. N.</creator><creator>Ul’yanov, M. V.</creator><creator>Fomichev, M. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</title><author>Zhukova, G. N. ; Ul’yanov, M. V. ; Fomichev, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Asymmetry</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Exact solutions</topic><topic>Job shops</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Operations Research</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>System Analysis</topic><topic>Systems Theory</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukova, G. N.</creatorcontrib><creatorcontrib>Ul’yanov, M. V.</creatorcontrib><creatorcontrib>Fomichev, M. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukova, G. N.</au><au>Ul’yanov, M. V.</au><au>Fomichev, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>80</volume><issue>11</issue><spage>2054</spage><epage>2067</epage><pages>2054-2067</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117919110092</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2019-11, Vol.80 (11), p.2054-2067 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_journals_2314280218 |
source | SpringerNature Journals |
subjects | Algorithms Asymmetry CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Exact solutions Job shops Mathematical analysis Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Operations Research Optimization Robotics Statistical analysis System Analysis Systems Theory Traveling salesman problem |
title | A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Exact%20Algorithm%20for%20the%20Asymmetric%20Traveling%20Salesman%20Problem:%20Construction%20and%20a%20Statistical%20Study%20of%20Computational%20Efficiency&rft.jtitle=Automation%20and%20remote%20control&rft.au=Zhukova,%20G.%20N.&rft.date=2019-11-01&rft.volume=80&rft.issue=11&rft.spage=2054&rft.epage=2067&rft.pages=2054-2067&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117919110092&rft_dat=%3Cproquest_cross%3E2314280218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314280218&rft_id=info:pmid/&rfr_iscdi=true |