A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency

We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2019-11, Vol.80 (11), p.2054-2067
Hauptverfasser: Zhukova, G. N., Ul’yanov, M. V., Fomichev, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2067
container_issue 11
container_start_page 2054
container_title Automation and remote control
container_volume 80
creator Zhukova, G. N.
Ul’yanov, M. V.
Fomichev, M. I.
description We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.
doi_str_mv 10.1134/S0005117919110092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314280218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314280218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wge83Q3lGoFQaF1PWTyaFNmkppkxPkH_mwzVHAhru7lnu8cLgeAa4xuMabp3RohlGFcVLjCGKGKnIAZzlGZUETJKZhNcjLp5-DC-z1CkSJ0Br5quBpbpwVcfjIeYN1trdNh10NlHQw7CWs_9r0MTnO4cexDdtps4Zp10vfMwFdn207293BhjQ9u4EFbA5kRkMF1YEH7oDnr4j6IEVoVuf4wTII18bxUSnMtDR8vwZlinZdXP3MO3h6Wm8UqeX55fFrUzwmnOA9JQbOqlJxKRmRRpIxKIWhZopRmJeFK5TlFPOW8VLRFMhWcc4HbShQM4TYrKjoHN8fcg7Pvg_Sh2dvBxV98QyhOSYkILiOFjxR31nsnVXNwumdubDBqpsKbP4VHDzl6fGTNVrrf5P9N3-Bog-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314280218</pqid></control><display><type>article</type><title>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</title><source>SpringerNature Journals</source><creator>Zhukova, G. N. ; Ul’yanov, M. V. ; Fomichev, M. I.</creator><creatorcontrib>Zhukova, G. N. ; Ul’yanov, M. V. ; Fomichev, M. I.</creatorcontrib><description>We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117919110092</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Asymmetry ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Exact solutions ; Job shops ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Operations Research ; Optimization ; Robotics ; Statistical analysis ; System Analysis ; Systems Theory ; Traveling salesman problem</subject><ispartof>Automation and remote control, 2019-11, Vol.80 (11), p.2054-2067</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</citedby><cites>FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117919110092$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117919110092$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhukova, G. N.</creatorcontrib><creatorcontrib>Ul’yanov, M. V.</creatorcontrib><creatorcontrib>Fomichev, M. I.</creatorcontrib><title>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.</description><subject>Algorithms</subject><subject>Asymmetry</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Exact solutions</subject><subject>Job shops</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Operations Research</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>System Analysis</subject><subject>Systems Theory</subject><subject>Traveling salesman problem</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wge83Q3lGoFQaF1PWTyaFNmkppkxPkH_mwzVHAhru7lnu8cLgeAa4xuMabp3RohlGFcVLjCGKGKnIAZzlGZUETJKZhNcjLp5-DC-z1CkSJ0Br5quBpbpwVcfjIeYN1trdNh10NlHQw7CWs_9r0MTnO4cexDdtps4Zp10vfMwFdn207293BhjQ9u4EFbA5kRkMF1YEH7oDnr4j6IEVoVuf4wTII18bxUSnMtDR8vwZlinZdXP3MO3h6Wm8UqeX55fFrUzwmnOA9JQbOqlJxKRmRRpIxKIWhZopRmJeFK5TlFPOW8VLRFMhWcc4HbShQM4TYrKjoHN8fcg7Pvg_Sh2dvBxV98QyhOSYkILiOFjxR31nsnVXNwumdubDBqpsKbP4VHDzl6fGTNVrrf5P9N3-Bog-w</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhukova, G. N.</creator><creator>Ul’yanov, M. V.</creator><creator>Fomichev, M. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</title><author>Zhukova, G. N. ; Ul’yanov, M. V. ; Fomichev, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-73598ec3ea2e774a3edd388043582cff6630c4cc8f3b0e4dcccd1b9d7a01b5793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Asymmetry</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Exact solutions</topic><topic>Job shops</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Operations Research</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>System Analysis</topic><topic>Systems Theory</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukova, G. N.</creatorcontrib><creatorcontrib>Ul’yanov, M. V.</creatorcontrib><creatorcontrib>Fomichev, M. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukova, G. N.</au><au>Ul’yanov, M. V.</au><au>Fomichev, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>80</volume><issue>11</issue><spage>2054</spage><epage>2067</epage><pages>2054-2067</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin–Kernighan–Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin–Kernighan–Helsgaun algorithm can significantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branchand- bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117919110092</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2019-11, Vol.80 (11), p.2054-2067
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_journals_2314280218
source SpringerNature Journals
subjects Algorithms
Asymmetry
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Exact solutions
Job shops
Mathematical analysis
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Operations Research
Optimization
Robotics
Statistical analysis
System Analysis
Systems Theory
Traveling salesman problem
title A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem: Construction and a Statistical Study of Computational Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Exact%20Algorithm%20for%20the%20Asymmetric%20Traveling%20Salesman%20Problem:%20Construction%20and%20a%20Statistical%20Study%20of%20Computational%20Efficiency&rft.jtitle=Automation%20and%20remote%20control&rft.au=Zhukova,%20G.%20N.&rft.date=2019-11-01&rft.volume=80&rft.issue=11&rft.spage=2054&rft.epage=2067&rft.pages=2054-2067&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117919110092&rft_dat=%3Cproquest_cross%3E2314280218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314280218&rft_id=info:pmid/&rfr_iscdi=true