Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries

•Validation of Gnielinski’s 2013 calculation method for heat transfer coefficients particularly for 1000 

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2019-12, Vol.145, p.118746, Article 118746
Hauptverfasser: Bertsche, Dirk, Knipper, Paul, Kapfer, Konstantin, Wetzel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118746
container_title International journal of heat and mass transfer
container_volume 145
creator Bertsche, Dirk
Knipper, Paul
Kapfer, Konstantin
Wetzel, Thomas
description •Validation of Gnielinski’s 2013 calculation method for heat transfer coefficients particularly for 1000 
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.118746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314265710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019319441</els_id><sourcerecordid>2314265710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4aaeab71c9633e3a5d9ae15390903998daf288f89b640290c6648cdc803caf523</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouK7-h4AXD7YmTbdtbsqyfrHgRc9hmk53U7ptTdpd_Q_-aFOqJy9CYMh8PMM7LyFXnIWc8eSmCk21Reh34FxvoXEl2jBiXIacZ2mcHJGZjzKIeCaPyYwxngZScHZKzpyrxi-Lkxn5Wn10aM0Omx5qapo9ut5soDdtQ_0bN9BfvC_TGnamAXs9Jc3Y5-egKWg_2HyoPYdqY_VQg6Wd6ZCWdXugB9NvqUXXofa8dkpa3PjFNG-HpgBr0J2TkxJqhxc_cU7e7levy8dg_fLwtLxbBzpmaR_EAAh5yrVMhEABi0IC8oWQTDIhZVZAGWVZmck8iVkkmU6SONOFzpjQUC4iMSeXE7ez7fvgFauqHawX4lQkeBwli5Qz33U7dWnbOmexVJ0_FNhPxZkaPVCV-uuBGj1Qkwce8Twh0KvZG1912mCjsTDWX0IVrfk_7Bs4eKBC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314265710</pqid></control><display><type>article</type><title>Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries</title><source>Elsevier ScienceDirect Journals</source><creator>Bertsche, Dirk ; Knipper, Paul ; Kapfer, Konstantin ; Wetzel, Thomas</creator><creatorcontrib>Bertsche, Dirk ; Knipper, Paul ; Kapfer, Konstantin ; Wetzel, Thomas</creatorcontrib><description><![CDATA[•Validation of Gnielinski’s 2013 calculation method for heat transfer coefficients particularly for 1000 < Re < 4000 and 41 < Pr < 70, where this method has not yet been checked up to now against experimental data.•The flow regime boundaries (laminar, transitional, quasi-transitional and turbulent flow) are evaluated for Prandtl numbers in the range of 13 < Pr < 70 using the method proposed by Everts and Meyer [17]. The empirical prediction methods for heat transfer coefficients in the transition regime between laminar and fully turbulent flow are still subject to changes. This situation reflects a lack of reliable experimental data, which are consistently determined over a wide range of relevant Reynolds and Prandtl numbers. This contribution presents new measurement data, in particular 164 data points for heat transfer coefficients, consistently determined over a wide range of Reynolds and Prandtl numbers, ranging from 13 < Pr < 70 and 375 < Re < 13100. In addition, the widely accepted prediction method for heat transfer in circular pipes according to Gnielinski is tested with the present data and other relevant data from literature. This method relies on a linear interpolation between the heat transfer coefficients at the onset of the transition regime and that of the fully turbulent regime. Consequently, working on a consensus about the values of these onset points is an important issue. In this contribution, the transitional flow regime has been found to start at Recr = 2300, and the fully turbulent flow regime to start in the range of 4100 < Ret < 5400. Those findings support the latest version of Gnielinski’s method, published in 2013, as well as other recent work on the topic, particularly that of Everts and Meyer.]]></description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.118746</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Calculation method ; Circular pipe flow ; Data points ; Fluid dynamics ; Heat transfer ; Heat transfer coefficients ; Interpolation ; Laminar ; Laminar flow ; Laminar heat transfer ; Pipe flow ; Simulation ; Transition ; Turbulent ; Turbulent flow</subject><ispartof>International journal of heat and mass transfer, 2019-12, Vol.145, p.118746, Article 118746</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4aaeab71c9633e3a5d9ae15390903998daf288f89b640290c6648cdc803caf523</citedby><cites>FETCH-LOGICAL-c407t-4aaeab71c9633e3a5d9ae15390903998daf288f89b640290c6648cdc803caf523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931019319441$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bertsche, Dirk</creatorcontrib><creatorcontrib>Knipper, Paul</creatorcontrib><creatorcontrib>Kapfer, Konstantin</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><title>Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries</title><title>International journal of heat and mass transfer</title><description><![CDATA[•Validation of Gnielinski’s 2013 calculation method for heat transfer coefficients particularly for 1000 < Re < 4000 and 41 < Pr < 70, where this method has not yet been checked up to now against experimental data.•The flow regime boundaries (laminar, transitional, quasi-transitional and turbulent flow) are evaluated for Prandtl numbers in the range of 13 < Pr < 70 using the method proposed by Everts and Meyer [17]. The empirical prediction methods for heat transfer coefficients in the transition regime between laminar and fully turbulent flow are still subject to changes. This situation reflects a lack of reliable experimental data, which are consistently determined over a wide range of relevant Reynolds and Prandtl numbers. This contribution presents new measurement data, in particular 164 data points for heat transfer coefficients, consistently determined over a wide range of Reynolds and Prandtl numbers, ranging from 13 < Pr < 70 and 375 < Re < 13100. In addition, the widely accepted prediction method for heat transfer in circular pipes according to Gnielinski is tested with the present data and other relevant data from literature. This method relies on a linear interpolation between the heat transfer coefficients at the onset of the transition regime and that of the fully turbulent regime. Consequently, working on a consensus about the values of these onset points is an important issue. In this contribution, the transitional flow regime has been found to start at Recr = 2300, and the fully turbulent flow regime to start in the range of 4100 < Ret < 5400. Those findings support the latest version of Gnielinski’s method, published in 2013, as well as other recent work on the topic, particularly that of Everts and Meyer.]]></description><subject>Calculation method</subject><subject>Circular pipe flow</subject><subject>Data points</subject><subject>Fluid dynamics</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Interpolation</subject><subject>Laminar</subject><subject>Laminar flow</subject><subject>Laminar heat transfer</subject><subject>Pipe flow</subject><subject>Simulation</subject><subject>Transition</subject><subject>Turbulent</subject><subject>Turbulent flow</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouK7-h4AXD7YmTbdtbsqyfrHgRc9hmk53U7ptTdpd_Q_-aFOqJy9CYMh8PMM7LyFXnIWc8eSmCk21Reh34FxvoXEl2jBiXIacZ2mcHJGZjzKIeCaPyYwxngZScHZKzpyrxi-Lkxn5Wn10aM0Omx5qapo9ut5soDdtQ_0bN9BfvC_TGnamAXs9Jc3Y5-egKWg_2HyoPYdqY_VQg6Wd6ZCWdXugB9NvqUXXofa8dkpa3PjFNG-HpgBr0J2TkxJqhxc_cU7e7levy8dg_fLwtLxbBzpmaR_EAAh5yrVMhEABi0IC8oWQTDIhZVZAGWVZmck8iVkkmU6SONOFzpjQUC4iMSeXE7ez7fvgFauqHawX4lQkeBwli5Qz33U7dWnbOmexVJ0_FNhPxZkaPVCV-uuBGj1Qkwce8Twh0KvZG1912mCjsTDWX0IVrfk_7Bs4eKBC</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Bertsche, Dirk</creator><creator>Knipper, Paul</creator><creator>Kapfer, Konstantin</creator><creator>Wetzel, Thomas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20191201</creationdate><title>Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries</title><author>Bertsche, Dirk ; Knipper, Paul ; Kapfer, Konstantin ; Wetzel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4aaeab71c9633e3a5d9ae15390903998daf288f89b640290c6648cdc803caf523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculation method</topic><topic>Circular pipe flow</topic><topic>Data points</topic><topic>Fluid dynamics</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Interpolation</topic><topic>Laminar</topic><topic>Laminar flow</topic><topic>Laminar heat transfer</topic><topic>Pipe flow</topic><topic>Simulation</topic><topic>Transition</topic><topic>Turbulent</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertsche, Dirk</creatorcontrib><creatorcontrib>Knipper, Paul</creatorcontrib><creatorcontrib>Kapfer, Konstantin</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertsche, Dirk</au><au>Knipper, Paul</au><au>Kapfer, Konstantin</au><au>Wetzel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>145</volume><spage>118746</spage><pages>118746-</pages><artnum>118746</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract><![CDATA[•Validation of Gnielinski’s 2013 calculation method for heat transfer coefficients particularly for 1000 < Re < 4000 and 41 < Pr < 70, where this method has not yet been checked up to now against experimental data.•The flow regime boundaries (laminar, transitional, quasi-transitional and turbulent flow) are evaluated for Prandtl numbers in the range of 13 < Pr < 70 using the method proposed by Everts and Meyer [17]. The empirical prediction methods for heat transfer coefficients in the transition regime between laminar and fully turbulent flow are still subject to changes. This situation reflects a lack of reliable experimental data, which are consistently determined over a wide range of relevant Reynolds and Prandtl numbers. This contribution presents new measurement data, in particular 164 data points for heat transfer coefficients, consistently determined over a wide range of Reynolds and Prandtl numbers, ranging from 13 < Pr < 70 and 375 < Re < 13100. In addition, the widely accepted prediction method for heat transfer in circular pipes according to Gnielinski is tested with the present data and other relevant data from literature. This method relies on a linear interpolation between the heat transfer coefficients at the onset of the transition regime and that of the fully turbulent regime. Consequently, working on a consensus about the values of these onset points is an important issue. In this contribution, the transitional flow regime has been found to start at Recr = 2300, and the fully turbulent flow regime to start in the range of 4100 < Ret < 5400. Those findings support the latest version of Gnielinski’s method, published in 2013, as well as other recent work on the topic, particularly that of Everts and Meyer.]]></abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.118746</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2019-12, Vol.145, p.118746, Article 118746
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2314265710
source Elsevier ScienceDirect Journals
subjects Calculation method
Circular pipe flow
Data points
Fluid dynamics
Heat transfer
Heat transfer coefficients
Interpolation
Laminar
Laminar flow
Laminar heat transfer
Pipe flow
Simulation
Transition
Turbulent
Turbulent flow
title Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20on%20heat%20transfer%20in%20laminar,%20transitional%20and%20turbulent%20circular%20pipe%20flow%20with%20respect%20to%20flow%20regime%20boundaries&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Bertsche,%20Dirk&rft.date=2019-12-01&rft.volume=145&rft.spage=118746&rft.pages=118746-&rft.artnum=118746&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.118746&rft_dat=%3Cproquest_cross%3E2314265710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314265710&rft_id=info:pmid/&rft_els_id=S0017931019319441&rfr_iscdi=true