Option pricing under the Kou jump-diffusion model: A DG approach

More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hozman, Jiří, Tichý, Tomáš
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2172
creator Hozman, Jiří
Tichý, Tomáš
description More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.
doi_str_mv 10.1063/1.5133547
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2314114354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314114354</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-10a751efd7087c678cbb7f869e868effe12e29bc8e54b4c9c499f8d0af73006c3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFYX_oMBd0Lq3MzblaXVKha6UXA3TCYzNqVJxjwE_70JLbhzdTffPYfvIHQNZAZE0DuYcaCUM3mCJsA5JFKAOEUTQjRLUkY_ztFF2-4ISbWUaoIeNrEr6grHpnBF9Yn7KvcN7rYev9Y93vVlTPIihL4dobLO_f4ez_FyhW2MTW3d9hKdBbtv_dXxTtH70-Pb4jlZb1Yvi_k6iSmnXQLESg4-5JIo6YRULstkUEJ7JZQPwUPqU5055TnLmNOOaR1UTmyQlBDh6BTdHHKH2q_et53Z1X1TDZUmpcAA2GA9ULcHqnVFZ0czM5iVtvkx33VjwBzXMTEP_8FAzDjn3wP9BQVYZa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2314114354</pqid></control><display><type>conference_proceeding</type><title>Option pricing under the Kou jump-diffusion model: A DG approach</title><source>AIP Journals Complete</source><creator>Hozman, Jiří ; Tichý, Tomáš</creator><contributor>Venkov, George ; Pasheva, Vesela ; Popivanov, Nedyu</contributor><creatorcontrib>Hozman, Jiří ; Tichý, Tomáš ; Venkov, George ; Pasheva, Vesela ; Popivanov, Nedyu</creatorcontrib><description>More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5133547</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Finite element method ; Galerkin method ; Integrals ; Linear algebra ; Mathematical analysis ; Pricing</subject><ispartof>AIP conference proceedings, 2019, Vol.2172 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5133547$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Venkov, George</contributor><contributor>Pasheva, Vesela</contributor><contributor>Popivanov, Nedyu</contributor><creatorcontrib>Hozman, Jiří</creatorcontrib><creatorcontrib>Tichý, Tomáš</creatorcontrib><title>Option pricing under the Kou jump-diffusion model: A DG approach</title><title>AIP conference proceedings</title><description>More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.</description><subject>Differential equations</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Pricing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLw0AUhQdRsFYX_oMBd0Lq3MzblaXVKha6UXA3TCYzNqVJxjwE_70JLbhzdTffPYfvIHQNZAZE0DuYcaCUM3mCJsA5JFKAOEUTQjRLUkY_ztFF2-4ISbWUaoIeNrEr6grHpnBF9Yn7KvcN7rYev9Y93vVlTPIihL4dobLO_f4ez_FyhW2MTW3d9hKdBbtv_dXxTtH70-Pb4jlZb1Yvi_k6iSmnXQLESg4-5JIo6YRULstkUEJ7JZQPwUPqU5055TnLmNOOaR1UTmyQlBDh6BTdHHKH2q_et53Z1X1TDZUmpcAA2GA9ULcHqnVFZ0czM5iVtvkx33VjwBzXMTEP_8FAzDjn3wP9BQVYZa0</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Hozman, Jiří</creator><creator>Tichý, Tomáš</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191113</creationdate><title>Option pricing under the Kou jump-diffusion model: A DG approach</title><author>Hozman, Jiří ; Tichý, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-10a751efd7087c678cbb7f869e868effe12e29bc8e54b4c9c499f8d0af73006c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Differential equations</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Pricing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hozman, Jiří</creatorcontrib><creatorcontrib>Tichý, Tomáš</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hozman, Jiří</au><au>Tichý, Tomáš</au><au>Venkov, George</au><au>Pasheva, Vesela</au><au>Popivanov, Nedyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Option pricing under the Kou jump-diffusion model: A DG approach</atitle><btitle>AIP conference proceedings</btitle><date>2019-11-13</date><risdate>2019</risdate><volume>2172</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133547</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2172 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2314114354
source AIP Journals Complete
subjects Differential equations
Finite element method
Galerkin method
Integrals
Linear algebra
Mathematical analysis
Pricing
title Option pricing under the Kou jump-diffusion model: A DG approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Option%20pricing%20under%20the%20Kou%20jump-diffusion%20model:%20A%20DG%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Hozman,%20Ji%C5%99%C3%AD&rft.date=2019-11-13&rft.volume=2172&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5133547&rft_dat=%3Cproquest_scita%3E2314114354%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314114354&rft_id=info:pmid/&rfr_iscdi=true