Option pricing under the Kou jump-diffusion model: A DG approach
More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2172 |
creator | Hozman, Jiří Tichý, Tomáš |
description | More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks. |
doi_str_mv | 10.1063/1.5133547 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2314114354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314114354</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-10a751efd7087c678cbb7f869e868effe12e29bc8e54b4c9c499f8d0af73006c3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFYX_oMBd0Lq3MzblaXVKha6UXA3TCYzNqVJxjwE_70JLbhzdTffPYfvIHQNZAZE0DuYcaCUM3mCJsA5JFKAOEUTQjRLUkY_ztFF2-4ISbWUaoIeNrEr6grHpnBF9Yn7KvcN7rYev9Y93vVlTPIihL4dobLO_f4ez_FyhW2MTW3d9hKdBbtv_dXxTtH70-Pb4jlZb1Yvi_k6iSmnXQLESg4-5JIo6YRULstkUEJ7JZQPwUPqU5055TnLmNOOaR1UTmyQlBDh6BTdHHKH2q_et53Z1X1TDZUmpcAA2GA9ULcHqnVFZ0czM5iVtvkx33VjwBzXMTEP_8FAzDjn3wP9BQVYZa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2314114354</pqid></control><display><type>conference_proceeding</type><title>Option pricing under the Kou jump-diffusion model: A DG approach</title><source>AIP Journals Complete</source><creator>Hozman, Jiří ; Tichý, Tomáš</creator><contributor>Venkov, George ; Pasheva, Vesela ; Popivanov, Nedyu</contributor><creatorcontrib>Hozman, Jiří ; Tichý, Tomáš ; Venkov, George ; Pasheva, Vesela ; Popivanov, Nedyu</creatorcontrib><description>More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5133547</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Finite element method ; Galerkin method ; Integrals ; Linear algebra ; Mathematical analysis ; Pricing</subject><ispartof>AIP conference proceedings, 2019, Vol.2172 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5133547$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Venkov, George</contributor><contributor>Pasheva, Vesela</contributor><contributor>Popivanov, Nedyu</contributor><creatorcontrib>Hozman, Jiří</creatorcontrib><creatorcontrib>Tichý, Tomáš</creatorcontrib><title>Option pricing under the Kou jump-diffusion model: A DG approach</title><title>AIP conference proceedings</title><description>More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.</description><subject>Differential equations</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Pricing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLw0AUhQdRsFYX_oMBd0Lq3MzblaXVKha6UXA3TCYzNqVJxjwE_70JLbhzdTffPYfvIHQNZAZE0DuYcaCUM3mCJsA5JFKAOEUTQjRLUkY_ztFF2-4ISbWUaoIeNrEr6grHpnBF9Yn7KvcN7rYev9Y93vVlTPIihL4dobLO_f4ez_FyhW2MTW3d9hKdBbtv_dXxTtH70-Pb4jlZb1Yvi_k6iSmnXQLESg4-5JIo6YRULstkUEJ7JZQPwUPqU5055TnLmNOOaR1UTmyQlBDh6BTdHHKH2q_et53Z1X1TDZUmpcAA2GA9ULcHqnVFZ0czM5iVtvkx33VjwBzXMTEP_8FAzDjn3wP9BQVYZa0</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Hozman, Jiří</creator><creator>Tichý, Tomáš</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191113</creationdate><title>Option pricing under the Kou jump-diffusion model: A DG approach</title><author>Hozman, Jiří ; Tichý, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-10a751efd7087c678cbb7f869e868effe12e29bc8e54b4c9c499f8d0af73006c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Differential equations</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Pricing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hozman, Jiří</creatorcontrib><creatorcontrib>Tichý, Tomáš</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hozman, Jiří</au><au>Tichý, Tomáš</au><au>Venkov, George</au><au>Pasheva, Vesela</au><au>Popivanov, Nedyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Option pricing under the Kou jump-diffusion model: A DG approach</atitle><btitle>AIP conference proceedings</btitle><date>2019-11-13</date><risdate>2019</risdate><volume>2172</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133547</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2172 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2314114354 |
source | AIP Journals Complete |
subjects | Differential equations Finite element method Galerkin method Integrals Linear algebra Mathematical analysis Pricing |
title | Option pricing under the Kou jump-diffusion model: A DG approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Option%20pricing%20under%20the%20Kou%20jump-diffusion%20model:%20A%20DG%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Hozman,%20Ji%C5%99%C3%AD&rft.date=2019-11-13&rft.volume=2172&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5133547&rft_dat=%3Cproquest_scita%3E2314114354%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314114354&rft_id=info:pmid/&rfr_iscdi=true |