Evaporation‐Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All‐Solution Process

To ensure laboratory‐to‐industry transfer of next‐generation energy harvesting organic solar cells (OSCs), it is necessary to develop flexible OSC modules that can be produced on a continuous roll‐to‐roll basis and to apply an all‐solution process. In this study, nonfullerene acceptors (NFAs)‐based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-11, Vol.9 (42), p.n/a
Hauptverfasser: Han, Yong Woon, Jeon, Sung Jae, Lee, Hyoung Seok, Park, Hongkwan, Kim, Kwang Su, Lee, Ho‐Won, Moon, Doo Kyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced energy materials
container_volume 9
creator Han, Yong Woon
Jeon, Sung Jae
Lee, Hyoung Seok
Park, Hongkwan
Kim, Kwang Su
Lee, Ho‐Won
Moon, Doo Kyung
description To ensure laboratory‐to‐industry transfer of next‐generation energy harvesting organic solar cells (OSCs), it is necessary to develop flexible OSC modules that can be produced on a continuous roll‐to‐roll basis and to apply an all‐solution process. In this study, nonfullerene acceptors (NFAs)‐based donor polymer, SMD2, is newly designed and synthesized to continuously fabricate high‐performance flexible OSC modules. Also, multifunctional hole transport layers (HTLs), WO3/HTL solar bilayer HTLs, are developed and applied via an all‐solution process called “ProcessOne” into inverted structure. SMD2, the donor terpolymer, has a deep highest occupied molecular orbital (HOMO) level and can achieve a power conversion efficiency (PCE) of 11.3% with NFAs without any pre‐/post‐treatment because of its optimal balance between crystallinity and miscibility. Furthermore, the integration of multifunctional HTLs enables the recovery of the drop in open circuit voltage (VOC) caused by a mismatch in energy levels between the deep HOMO level of the NFAs‐based bulk‐heterojunction layer and the solution‐processed HTLs. Also, the photostability under ultraviolet‐exposure necessary for “ProcessOne” is greatly improved because of the integration of multifunctional HTLs. Consequently, because of the synergistic effects of these approaches, the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an active area of 80 cm2. Nonfullerene acceptors‐based terpolymer, SMD2, is designed and synthesized to continuously fabricate high‐performance organic solar cell (OSC) modules, and multifunctional hole transport layers are developed, and applied to flexible modules via an all‐solution process. the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an area of 80 cm2.
doi_str_mv 10.1002/aenm.201902065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313880888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313880888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-8d21ab5609dc50d4259f38eeacc2d988893f7a17bad767ec9cc56405c8a9c3543</originalsourceid><addsrcrecordid>eNqFkL1OwzAURiMEElXpymyJOcU_cWKPUdUCUluQgNlynBuUyrWL3QDdeASekSchVVEZucu9w_nOlb4kuSR4TDCm1xrcekwxkZjinJ8kA5KTLM1Fhk-PN6PnySjGFe4nkwQzNkjW0ze98UFvW---P79mAQAtvWs6ayGAAzSz8NFWFtB9eNGuNejRWx3QBKxFC193FiJaaNc12my7ADWqdqh0qLS21_Vstzejh-ANxHiRnDXaRhj97mHyPJs-TW7T-f3N3aScp4aRgqeipkRXPMeyNhzXGeWyYQJAG0NrKYSQrCk0KSpdF3kBRhrD8wxzI7Q0jGdsmFwdvJvgXzuIW7XyXXD9S0UZYULgXtJT4wNlgo8xQKM2oV3rsFMEq32rat-qOrbaB-Qh8N5a2P1Dq3K6XPxlfwCbnH4m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313880888</pqid></control><display><type>article</type><title>Evaporation‐Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All‐Solution Process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Han, Yong Woon ; Jeon, Sung Jae ; Lee, Hyoung Seok ; Park, Hongkwan ; Kim, Kwang Su ; Lee, Ho‐Won ; Moon, Doo Kyung</creator><creatorcontrib>Han, Yong Woon ; Jeon, Sung Jae ; Lee, Hyoung Seok ; Park, Hongkwan ; Kim, Kwang Su ; Lee, Ho‐Won ; Moon, Doo Kyung</creatorcontrib><description>To ensure laboratory‐to‐industry transfer of next‐generation energy harvesting organic solar cells (OSCs), it is necessary to develop flexible OSC modules that can be produced on a continuous roll‐to‐roll basis and to apply an all‐solution process. In this study, nonfullerene acceptors (NFAs)‐based donor polymer, SMD2, is newly designed and synthesized to continuously fabricate high‐performance flexible OSC modules. Also, multifunctional hole transport layers (HTLs), WO3/HTL solar bilayer HTLs, are developed and applied via an all‐solution process called “ProcessOne” into inverted structure. SMD2, the donor terpolymer, has a deep highest occupied molecular orbital (HOMO) level and can achieve a power conversion efficiency (PCE) of 11.3% with NFAs without any pre‐/post‐treatment because of its optimal balance between crystallinity and miscibility. Furthermore, the integration of multifunctional HTLs enables the recovery of the drop in open circuit voltage (VOC) caused by a mismatch in energy levels between the deep HOMO level of the NFAs‐based bulk‐heterojunction layer and the solution‐processed HTLs. Also, the photostability under ultraviolet‐exposure necessary for “ProcessOne” is greatly improved because of the integration of multifunctional HTLs. Consequently, because of the synergistic effects of these approaches, the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an active area of 80 cm2. Nonfullerene acceptors‐based terpolymer, SMD2, is designed and synthesized to continuously fabricate high‐performance organic solar cell (OSC) modules, and multifunctional hole transport layers are developed, and applied to flexible modules via an all‐solution process. the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an area of 80 cm2.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201902065</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>all‐solution process ; Energy conversion efficiency ; Energy harvesting ; Energy levels ; Heterojunctions ; large area device ; Miscibility ; Modules ; Molecular orbitals ; nonfullerene ; Open circuit voltage ; Organic chemistry ; organic solar cell modules ; Photovoltaic cells ; roll‐to‐roll process ; Solar cells ; Terpolymers</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (42), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-8d21ab5609dc50d4259f38eeacc2d988893f7a17bad767ec9cc56405c8a9c3543</citedby><cites>FETCH-LOGICAL-c3175-8d21ab5609dc50d4259f38eeacc2d988893f7a17bad767ec9cc56405c8a9c3543</cites><orcidid>0000-0001-9482-7508 ; 0000-0003-2347-7023 ; 0000-0003-3281-3324 ; 0000-0003-4013-5893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201902065$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201902065$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Han, Yong Woon</creatorcontrib><creatorcontrib>Jeon, Sung Jae</creatorcontrib><creatorcontrib>Lee, Hyoung Seok</creatorcontrib><creatorcontrib>Park, Hongkwan</creatorcontrib><creatorcontrib>Kim, Kwang Su</creatorcontrib><creatorcontrib>Lee, Ho‐Won</creatorcontrib><creatorcontrib>Moon, Doo Kyung</creatorcontrib><title>Evaporation‐Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All‐Solution Process</title><title>Advanced energy materials</title><description>To ensure laboratory‐to‐industry transfer of next‐generation energy harvesting organic solar cells (OSCs), it is necessary to develop flexible OSC modules that can be produced on a continuous roll‐to‐roll basis and to apply an all‐solution process. In this study, nonfullerene acceptors (NFAs)‐based donor polymer, SMD2, is newly designed and synthesized to continuously fabricate high‐performance flexible OSC modules. Also, multifunctional hole transport layers (HTLs), WO3/HTL solar bilayer HTLs, are developed and applied via an all‐solution process called “ProcessOne” into inverted structure. SMD2, the donor terpolymer, has a deep highest occupied molecular orbital (HOMO) level and can achieve a power conversion efficiency (PCE) of 11.3% with NFAs without any pre‐/post‐treatment because of its optimal balance between crystallinity and miscibility. Furthermore, the integration of multifunctional HTLs enables the recovery of the drop in open circuit voltage (VOC) caused by a mismatch in energy levels between the deep HOMO level of the NFAs‐based bulk‐heterojunction layer and the solution‐processed HTLs. Also, the photostability under ultraviolet‐exposure necessary for “ProcessOne” is greatly improved because of the integration of multifunctional HTLs. Consequently, because of the synergistic effects of these approaches, the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an active area of 80 cm2. Nonfullerene acceptors‐based terpolymer, SMD2, is designed and synthesized to continuously fabricate high‐performance organic solar cell (OSC) modules, and multifunctional hole transport layers are developed, and applied to flexible modules via an all‐solution process. the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an area of 80 cm2.</description><subject>all‐solution process</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy levels</subject><subject>Heterojunctions</subject><subject>large area device</subject><subject>Miscibility</subject><subject>Modules</subject><subject>Molecular orbitals</subject><subject>nonfullerene</subject><subject>Open circuit voltage</subject><subject>Organic chemistry</subject><subject>organic solar cell modules</subject><subject>Photovoltaic cells</subject><subject>roll‐to‐roll process</subject><subject>Solar cells</subject><subject>Terpolymers</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURiMEElXpymyJOcU_cWKPUdUCUluQgNlynBuUyrWL3QDdeASekSchVVEZucu9w_nOlb4kuSR4TDCm1xrcekwxkZjinJ8kA5KTLM1Fhk-PN6PnySjGFe4nkwQzNkjW0ze98UFvW---P79mAQAtvWs6ayGAAzSz8NFWFtB9eNGuNejRWx3QBKxFC193FiJaaNc12my7ADWqdqh0qLS21_Vstzejh-ANxHiRnDXaRhj97mHyPJs-TW7T-f3N3aScp4aRgqeipkRXPMeyNhzXGeWyYQJAG0NrKYSQrCk0KSpdF3kBRhrD8wxzI7Q0jGdsmFwdvJvgXzuIW7XyXXD9S0UZYULgXtJT4wNlgo8xQKM2oV3rsFMEq32rat-qOrbaB-Qh8N5a2P1Dq3K6XPxlfwCbnH4m</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Han, Yong Woon</creator><creator>Jeon, Sung Jae</creator><creator>Lee, Hyoung Seok</creator><creator>Park, Hongkwan</creator><creator>Kim, Kwang Su</creator><creator>Lee, Ho‐Won</creator><creator>Moon, Doo Kyung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9482-7508</orcidid><orcidid>https://orcid.org/0000-0003-2347-7023</orcidid><orcidid>https://orcid.org/0000-0003-3281-3324</orcidid><orcidid>https://orcid.org/0000-0003-4013-5893</orcidid></search><sort><creationdate>20191101</creationdate><title>Evaporation‐Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All‐Solution Process</title><author>Han, Yong Woon ; Jeon, Sung Jae ; Lee, Hyoung Seok ; Park, Hongkwan ; Kim, Kwang Su ; Lee, Ho‐Won ; Moon, Doo Kyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-8d21ab5609dc50d4259f38eeacc2d988893f7a17bad767ec9cc56405c8a9c3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>all‐solution process</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy levels</topic><topic>Heterojunctions</topic><topic>large area device</topic><topic>Miscibility</topic><topic>Modules</topic><topic>Molecular orbitals</topic><topic>nonfullerene</topic><topic>Open circuit voltage</topic><topic>Organic chemistry</topic><topic>organic solar cell modules</topic><topic>Photovoltaic cells</topic><topic>roll‐to‐roll process</topic><topic>Solar cells</topic><topic>Terpolymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yong Woon</creatorcontrib><creatorcontrib>Jeon, Sung Jae</creatorcontrib><creatorcontrib>Lee, Hyoung Seok</creatorcontrib><creatorcontrib>Park, Hongkwan</creatorcontrib><creatorcontrib>Kim, Kwang Su</creatorcontrib><creatorcontrib>Lee, Ho‐Won</creatorcontrib><creatorcontrib>Moon, Doo Kyung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yong Woon</au><au>Jeon, Sung Jae</au><au>Lee, Hyoung Seok</au><au>Park, Hongkwan</au><au>Kim, Kwang Su</au><au>Lee, Ho‐Won</au><au>Moon, Doo Kyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation‐Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All‐Solution Process</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>42</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>To ensure laboratory‐to‐industry transfer of next‐generation energy harvesting organic solar cells (OSCs), it is necessary to develop flexible OSC modules that can be produced on a continuous roll‐to‐roll basis and to apply an all‐solution process. In this study, nonfullerene acceptors (NFAs)‐based donor polymer, SMD2, is newly designed and synthesized to continuously fabricate high‐performance flexible OSC modules. Also, multifunctional hole transport layers (HTLs), WO3/HTL solar bilayer HTLs, are developed and applied via an all‐solution process called “ProcessOne” into inverted structure. SMD2, the donor terpolymer, has a deep highest occupied molecular orbital (HOMO) level and can achieve a power conversion efficiency (PCE) of 11.3% with NFAs without any pre‐/post‐treatment because of its optimal balance between crystallinity and miscibility. Furthermore, the integration of multifunctional HTLs enables the recovery of the drop in open circuit voltage (VOC) caused by a mismatch in energy levels between the deep HOMO level of the NFAs‐based bulk‐heterojunction layer and the solution‐processed HTLs. Also, the photostability under ultraviolet‐exposure necessary for “ProcessOne” is greatly improved because of the integration of multifunctional HTLs. Consequently, because of the synergistic effects of these approaches, the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an active area of 80 cm2. Nonfullerene acceptors‐based terpolymer, SMD2, is designed and synthesized to continuously fabricate high‐performance organic solar cell (OSC) modules, and multifunctional hole transport layers are developed, and applied to flexible modules via an all‐solution process. the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an area of 80 cm2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201902065</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9482-7508</orcidid><orcidid>https://orcid.org/0000-0003-2347-7023</orcidid><orcidid>https://orcid.org/0000-0003-3281-3324</orcidid><orcidid>https://orcid.org/0000-0003-4013-5893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-11, Vol.9 (42), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2313880888
source Wiley Online Library Journals Frontfile Complete
subjects all‐solution process
Energy conversion efficiency
Energy harvesting
Energy levels
Heterojunctions
large area device
Miscibility
Modules
Molecular orbitals
nonfullerene
Open circuit voltage
Organic chemistry
organic solar cell modules
Photovoltaic cells
roll‐to‐roll process
Solar cells
Terpolymers
title Evaporation‐Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by An All‐Solution Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%E2%80%90Free%20Nonfullerene%20Flexible%20Organic%20Solar%20Cell%20Modules%20Manufactured%20by%20An%20All%E2%80%90Solution%20Process&rft.jtitle=Advanced%20energy%20materials&rft.au=Han,%20Yong%20Woon&rft.date=2019-11-01&rft.volume=9&rft.issue=42&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201902065&rft_dat=%3Cproquest_cross%3E2313880888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313880888&rft_id=info:pmid/&rfr_iscdi=true