Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations
A new class of trajectory search methods for the planar circular restricted three-body problem (CR3BP) with perturbations is presented. In the phase space of the CR3BP, there exist bundles of trajectories involving the transition from one region to another inside invariant manifolds of libration poi...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2004-11, Vol.27 (6), p.1035-1045 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1045 |
---|---|
container_issue | 6 |
container_start_page | 1035 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 27 |
creator | Yamato, Hideaki Spencer, David |
description | A new class of trajectory search methods for the planar circular restricted three-body problem (CR3BP) with perturbations is presented. In the phase space of the CR3BP, there exist bundles of trajectories involving the transition from one region to another inside invariant manifolds of libration point orbits. Under the influence of perturbing forces, although these trajectory bundles can change their distributions and the locations, they still remain as orbit bundles for a considerable time in the phase space of the perturbed CR3BP. This paper presents a simple procedure of locating these orbit bundles directly in the CR3BP with perturbations. It is shown that by formulating the circular restricted problem of six bodies with the sun and the elliptical restricted problem of four bodies as perturbed CR3BP systems, the bundles of these solution orbits can be systematically and directly found on an arbitrarily chosen Poincare section. |
doi_str_mv | 10.2514/1.4524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2313813896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313813896</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-c297cae7649f8831a5e22722b770f515ca15e7aa128653bfa3ea2bde4fe9a03d3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOL9-Q0EUbzrz0TTtpQ6_YLCp8zqcpics0q0zSVH_vZUJxcGBc_PwvC8vIWeMjrlk2TUbZ5Jne2TEpBCpKIpsn4yoEiyVtKSH5CiEd0qZyJkakeeFh3VwMZ35ysXkFcGbZWJbn8wbWINPXjBE70zEOlksPWJ629bfydy3VYOrkHy6uEzm6GPnK4iuXYcTcmChCXj694_J2_3dYvKYTmcPT5ObaQpCsZgaXioDqPKstEUhGEjkXHFeKUWtZNIAk6gAGC9yKSoLAoFXNWYWS6CiFsfkcuvd-Paj61vqlQsGm742tl3QvMgUUzzvwfMd8L3t_LrvprlgouivzAed8W0IHq3eeLcC_60Z1b-7aqZ_d-3Biz8dBAON7fczLgx0LsqipLLnrrYcOIAhcmvRm9pq2zVNxK84NNxB_wf_AGHLj5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313813896</pqid></control><display><type>article</type><title>Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations</title><source>Alma/SFX Local Collection</source><creator>Yamato, Hideaki ; Spencer, David</creator><creatorcontrib>Yamato, Hideaki ; Spencer, David</creatorcontrib><description>A new class of trajectory search methods for the planar circular restricted three-body problem (CR3BP) with perturbations is presented. In the phase space of the CR3BP, there exist bundles of trajectories involving the transition from one region to another inside invariant manifolds of libration point orbits. Under the influence of perturbing forces, although these trajectory bundles can change their distributions and the locations, they still remain as orbit bundles for a considerable time in the phase space of the perturbed CR3BP. This paper presents a simple procedure of locating these orbit bundles directly in the CR3BP with perturbations. It is shown that by formulating the circular restricted problem of six bodies with the sun and the elliptical restricted problem of four bodies as perturbed CR3BP systems, the bundles of these solution orbits can be systematically and directly found on an arbitrarily chosen Poincare section.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.4524</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Decomposition ; Dynamical systems ; Exact sciences and technology ; Orbits ; Solar system ; Three body problem</subject><ispartof>Journal of guidance, control, and dynamics, 2004-11, Vol.27 (6), p.1035-1045</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Nov/Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-c297cae7649f8831a5e22722b770f515ca15e7aa128653bfa3ea2bde4fe9a03d3</citedby><cites>FETCH-LOGICAL-a371t-c297cae7649f8831a5e22722b770f515ca15e7aa128653bfa3ea2bde4fe9a03d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16398905$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamato, Hideaki</creatorcontrib><creatorcontrib>Spencer, David</creatorcontrib><title>Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations</title><title>Journal of guidance, control, and dynamics</title><description>A new class of trajectory search methods for the planar circular restricted three-body problem (CR3BP) with perturbations is presented. In the phase space of the CR3BP, there exist bundles of trajectories involving the transition from one region to another inside invariant manifolds of libration point orbits. Under the influence of perturbing forces, although these trajectory bundles can change their distributions and the locations, they still remain as orbit bundles for a considerable time in the phase space of the perturbed CR3BP. This paper presents a simple procedure of locating these orbit bundles directly in the CR3BP with perturbations. It is shown that by formulating the circular restricted problem of six bodies with the sun and the elliptical restricted problem of four bodies as perturbed CR3BP systems, the bundles of these solution orbits can be systematically and directly found on an arbitrarily chosen Poincare section.</description><subject>Aerospace engineering</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Decomposition</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Orbits</subject><subject>Solar system</subject><subject>Three body problem</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOL9-Q0EUbzrz0TTtpQ6_YLCp8zqcpics0q0zSVH_vZUJxcGBc_PwvC8vIWeMjrlk2TUbZ5Jne2TEpBCpKIpsn4yoEiyVtKSH5CiEd0qZyJkakeeFh3VwMZ35ysXkFcGbZWJbn8wbWINPXjBE70zEOlksPWJ629bfydy3VYOrkHy6uEzm6GPnK4iuXYcTcmChCXj694_J2_3dYvKYTmcPT5ObaQpCsZgaXioDqPKstEUhGEjkXHFeKUWtZNIAk6gAGC9yKSoLAoFXNWYWS6CiFsfkcuvd-Paj61vqlQsGm742tl3QvMgUUzzvwfMd8L3t_LrvprlgouivzAed8W0IHq3eeLcC_60Z1b-7aqZ_d-3Biz8dBAON7fczLgx0LsqipLLnrrYcOIAhcmvRm9pq2zVNxK84NNxB_wf_AGHLj5Y</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Yamato, Hideaki</creator><creator>Spencer, David</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041101</creationdate><title>Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations</title><author>Yamato, Hideaki ; Spencer, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-c297cae7649f8831a5e22722b770f515ca15e7aa128653bfa3ea2bde4fe9a03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aerospace engineering</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Decomposition</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Orbits</topic><topic>Solar system</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamato, Hideaki</creatorcontrib><creatorcontrib>Spencer, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamato, Hideaki</au><au>Spencer, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>27</volume><issue>6</issue><spage>1035</spage><epage>1045</epage><pages>1035-1045</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>A new class of trajectory search methods for the planar circular restricted three-body problem (CR3BP) with perturbations is presented. In the phase space of the CR3BP, there exist bundles of trajectories involving the transition from one region to another inside invariant manifolds of libration point orbits. Under the influence of perturbing forces, although these trajectory bundles can change their distributions and the locations, they still remain as orbit bundles for a considerable time in the phase space of the perturbed CR3BP. This paper presents a simple procedure of locating these orbit bundles directly in the CR3BP with perturbations. It is shown that by formulating the circular restricted problem of six bodies with the sun and the elliptical restricted problem of four bodies as perturbed CR3BP systems, the bundles of these solution orbits can be systematically and directly found on an arbitrarily chosen Poincare section.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.4524</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2004-11, Vol.27 (6), p.1035-1045 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_journals_2313813896 |
source | Alma/SFX Local Collection |
subjects | Aerospace engineering Applied sciences Computer science control theory systems Control theory. Systems Decomposition Dynamical systems Exact sciences and technology Orbits Solar system Three body problem |
title | Transit-Orbit Search for Planar Restricted Three-Body Problems with Perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transit-Orbit%20Search%20for%20Planar%20Restricted%20Three-Body%20Problems%20with%20Perturbations&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Yamato,%20Hideaki&rft.date=2004-11-01&rft.volume=27&rft.issue=6&rft.spage=1035&rft.epage=1045&rft.pages=1035-1045&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.4524&rft_dat=%3Cproquest_pasca%3E2313813896%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313813896&rft_id=info:pmid/&rfr_iscdi=true |