Robust Synergetic Design of Structural Dynamic Engine Out Controllers in Parameter Space
Engine out is a design criterion for a large transport aircraft from the viewpoint of flight safety, handling qualities, and structural dynamics. A structural dynamic engine out controller covers these aspects, especially the reduction of the loads level at the vertical tail. It is designed by a new...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2001-03, Vol.24 (2), p.305-314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 305 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 24 |
creator | Kordt, Michael J-uacute Ackermann, rgen |
description | Engine out is a design criterion for a large transport aircraft from the viewpoint of flight safety, handling qualities, and structural dynamics. A structural dynamic engine out controller covers these aspects, especially the reduction of the loads level at the vertical tail. It is designed by a new robust synergetic design method, using Ackermann's parameter space method (Ackermann, J., Robust Control, Springer-Verlag, Berlin, 1993, Chap. 11, pp. 307-353). It allows the combination of different controller structures, each of which satisfies specific requirements. This combination of controllers robustly satisfies all of the multidisciplinary requirements. Here, three controllers are combined: a standard lateral controller and a proportional-integral controller for safety and handling qualities and a structural dynamic controller, which robustly decouples the shear force at the vertical tail from the yaw rate. This unilateral decoupling controller achieves an early efficient yawing moment compensation before the pilot. The controller consists of a feedback of the yaw rate to the rudder. Thereby, critical flight and load conditions due to a delayed overreaction of the pilot are prevented. The three controllers are characterized by eigenvalue regions for the closed-loop system. These Gamma regions offer compromises between the conflicts in design goals. Using the parameter space method, this approach yields a set of robust controllers. A controller is selected and simulated on a nonlinear model. |
doi_str_mv | 10.2514/2.4713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2313810155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26878403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-9c4b7d924d3393dcf0b43eed7d3ca94300c85c490d46b09a0f12d5d1f2be1c5f3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoMouFb9DQFFvZl6kpPMTC5lW6tQqLgK3oVMPpYp2cyaZKD7753S0gUV8epcvA_Py-El5CWDUy6ZeM9PRcfwEVkxidhg34vHZAUdskaCgqfkWSnXAAxb1q3Ij6_TMJdKN4fk89bX0dIzX8ZtolOgm5pnW-dsIj07JLNbwvO0HZOnV3Ol6ynVPMXoc6Fjol9MNjtffaabvbH-OXkSTCz-xf09Id8_nn9bf2oury4-rz9cNkYg1kZZMXROceEQFTobYBDovescWqMEAtheWqHAiXYAZSAw7qRjgQ-eWRnwhLy98-7z9HP2perdWKyP0SQ_zUV3ouUCGBcL-eafJG8V9MjhP8C-6wXgAr76Dbye5pyWdzVHhj0DJuVRZ_NUSvZB7_O4M_mgGejbxTTXt4st4Ot7nSnWxJBNsmN5oGXbCybVsdWMxhwb_5C9-xt1l-q9CzrMMVZ_U_EXmkWsvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313810155</pqid></control><display><type>article</type><title>Robust Synergetic Design of Structural Dynamic Engine Out Controllers in Parameter Space</title><source>Alma/SFX Local Collection</source><creator>Kordt, Michael ; J-uacute ; Ackermann, rgen</creator><creatorcontrib>Kordt, Michael ; J-uacute ; Ackermann, rgen</creatorcontrib><description>Engine out is a design criterion for a large transport aircraft from the viewpoint of flight safety, handling qualities, and structural dynamics. A structural dynamic engine out controller covers these aspects, especially the reduction of the loads level at the vertical tail. It is designed by a new robust synergetic design method, using Ackermann's parameter space method (Ackermann, J., Robust Control, Springer-Verlag, Berlin, 1993, Chap. 11, pp. 307-353). It allows the combination of different controller structures, each of which satisfies specific requirements. This combination of controllers robustly satisfies all of the multidisciplinary requirements. Here, three controllers are combined: a standard lateral controller and a proportional-integral controller for safety and handling qualities and a structural dynamic controller, which robustly decouples the shear force at the vertical tail from the yaw rate. This unilateral decoupling controller achieves an early efficient yawing moment compensation before the pilot. The controller consists of a feedback of the yaw rate to the rudder. Thereby, critical flight and load conditions due to a delayed overreaction of the pilot are prevented. The three controllers are characterized by eigenvalue regions for the closed-loop system. These Gamma regions offer compromises between the conflicts in design goals. Using the parameter space method, this approach yields a set of robust controllers. A controller is selected and simulated on a nonlinear model.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/2.4713</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Applied sciences ; Closed loop control systems ; Closed loop systems ; Computer science; control theory; systems ; Computer simulation ; Control system synthesis ; Control theory. Systems ; Controllers ; Design ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feedback ; Flight dynamics ; Parameter estimation ; Pilots ; Robotics ; Robust control ; Robustness (control systems) ; Transport aircraft ; Two term control systems</subject><ispartof>Journal of guidance, control, and dynamics, 2001-03, Vol.24 (2), p.305-314</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Mar/Apr 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-9c4b7d924d3393dcf0b43eed7d3ca94300c85c490d46b09a0f12d5d1f2be1c5f3</citedby><cites>FETCH-LOGICAL-a433t-9c4b7d924d3393dcf0b43eed7d3ca94300c85c490d46b09a0f12d5d1f2be1c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5684159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kordt, Michael</creatorcontrib><creatorcontrib>J-uacute</creatorcontrib><creatorcontrib>Ackermann, rgen</creatorcontrib><title>Robust Synergetic Design of Structural Dynamic Engine Out Controllers in Parameter Space</title><title>Journal of guidance, control, and dynamics</title><description>Engine out is a design criterion for a large transport aircraft from the viewpoint of flight safety, handling qualities, and structural dynamics. A structural dynamic engine out controller covers these aspects, especially the reduction of the loads level at the vertical tail. It is designed by a new robust synergetic design method, using Ackermann's parameter space method (Ackermann, J., Robust Control, Springer-Verlag, Berlin, 1993, Chap. 11, pp. 307-353). It allows the combination of different controller structures, each of which satisfies specific requirements. This combination of controllers robustly satisfies all of the multidisciplinary requirements. Here, three controllers are combined: a standard lateral controller and a proportional-integral controller for safety and handling qualities and a structural dynamic controller, which robustly decouples the shear force at the vertical tail from the yaw rate. This unilateral decoupling controller achieves an early efficient yawing moment compensation before the pilot. The controller consists of a feedback of the yaw rate to the rudder. Thereby, critical flight and load conditions due to a delayed overreaction of the pilot are prevented. The three controllers are characterized by eigenvalue regions for the closed-loop system. These Gamma regions offer compromises between the conflicts in design goals. Using the parameter space method, this approach yields a set of robust controllers. A controller is selected and simulated on a nonlinear model.</description><subject>Aircraft</subject><subject>Applied sciences</subject><subject>Closed loop control systems</subject><subject>Closed loop systems</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Flight dynamics</subject><subject>Parameter estimation</subject><subject>Pilots</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Robustness (control systems)</subject><subject>Transport aircraft</subject><subject>Two term control systems</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhoMouFb9DQFFvZl6kpPMTC5lW6tQqLgK3oVMPpYp2cyaZKD7753S0gUV8epcvA_Py-El5CWDUy6ZeM9PRcfwEVkxidhg34vHZAUdskaCgqfkWSnXAAxb1q3Ij6_TMJdKN4fk89bX0dIzX8ZtolOgm5pnW-dsIj07JLNbwvO0HZOnV3Ol6ynVPMXoc6Fjol9MNjtffaabvbH-OXkSTCz-xf09Id8_nn9bf2oury4-rz9cNkYg1kZZMXROceEQFTobYBDovescWqMEAtheWqHAiXYAZSAw7qRjgQ-eWRnwhLy98-7z9HP2perdWKyP0SQ_zUV3ouUCGBcL-eafJG8V9MjhP8C-6wXgAr76Dbye5pyWdzVHhj0DJuVRZ_NUSvZB7_O4M_mgGejbxTTXt4st4Ot7nSnWxJBNsmN5oGXbCybVsdWMxhwb_5C9-xt1l-q9CzrMMVZ_U_EXmkWsvA</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Kordt, Michael</creator><creator>J-uacute</creator><creator>Ackermann, rgen</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>KR7</scope><scope>7TC</scope></search><sort><creationdate>20010301</creationdate><title>Robust Synergetic Design of Structural Dynamic Engine Out Controllers in Parameter Space</title><author>Kordt, Michael ; J-uacute ; Ackermann, rgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-9c4b7d924d3393dcf0b43eed7d3ca94300c85c490d46b09a0f12d5d1f2be1c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aircraft</topic><topic>Applied sciences</topic><topic>Closed loop control systems</topic><topic>Closed loop systems</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Flight dynamics</topic><topic>Parameter estimation</topic><topic>Pilots</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Robustness (control systems)</topic><topic>Transport aircraft</topic><topic>Two term control systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kordt, Michael</creatorcontrib><creatorcontrib>J-uacute</creatorcontrib><creatorcontrib>Ackermann, rgen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kordt, Michael</au><au>J-uacute</au><au>Ackermann, rgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Synergetic Design of Structural Dynamic Engine Out Controllers in Parameter Space</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>24</volume><issue>2</issue><spage>305</spage><epage>314</epage><pages>305-314</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>Engine out is a design criterion for a large transport aircraft from the viewpoint of flight safety, handling qualities, and structural dynamics. A structural dynamic engine out controller covers these aspects, especially the reduction of the loads level at the vertical tail. It is designed by a new robust synergetic design method, using Ackermann's parameter space method (Ackermann, J., Robust Control, Springer-Verlag, Berlin, 1993, Chap. 11, pp. 307-353). It allows the combination of different controller structures, each of which satisfies specific requirements. This combination of controllers robustly satisfies all of the multidisciplinary requirements. Here, three controllers are combined: a standard lateral controller and a proportional-integral controller for safety and handling qualities and a structural dynamic controller, which robustly decouples the shear force at the vertical tail from the yaw rate. This unilateral decoupling controller achieves an early efficient yawing moment compensation before the pilot. The controller consists of a feedback of the yaw rate to the rudder. Thereby, critical flight and load conditions due to a delayed overreaction of the pilot are prevented. The three controllers are characterized by eigenvalue regions for the closed-loop system. These Gamma regions offer compromises between the conflicts in design goals. Using the parameter space method, this approach yields a set of robust controllers. A controller is selected and simulated on a nonlinear model.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.4713</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2001-03, Vol.24 (2), p.305-314 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_journals_2313810155 |
source | Alma/SFX Local Collection |
subjects | Aircraft Applied sciences Closed loop control systems Closed loop systems Computer science control theory systems Computer simulation Control system synthesis Control theory. Systems Controllers Design Eigenvalues and eigenfunctions Exact sciences and technology Feedback Flight dynamics Parameter estimation Pilots Robotics Robust control Robustness (control systems) Transport aircraft Two term control systems |
title | Robust Synergetic Design of Structural Dynamic Engine Out Controllers in Parameter Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Synergetic%20Design%20of%20Structural%20Dynamic%20Engine%20Out%20Controllers%20in%20Parameter%20Space&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Kordt,%20Michael&rft.date=2001-03-01&rft.volume=24&rft.issue=2&rft.spage=305&rft.epage=314&rft.pages=305-314&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/2.4713&rft_dat=%3Cproquest_aiaa_%3E26878403%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313810155&rft_id=info:pmid/&rfr_iscdi=true |