Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology
Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total p...
Gespeichert in:
Veröffentlicht in: | Journal of applied spectroscopy 2019-09, Vol.86 (4), p.765-770 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 770 |
---|---|
container_issue | 4 |
container_start_page | 765 |
container_title | Journal of applied spectroscopy |
container_volume | 86 |
creator | Li, X.-Y. Fan, P.-P. Liu, Y. Hou, G.-L. Wang, Q. Lv, M.-R. |
description | Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models. |
doi_str_mv | 10.1007/s10812-019-00891-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2313714839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A609261140</galeid><sourcerecordid>A609261140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhhtRcFz9A54Cnjz0WpX0V47r-LWwq7KznkNPUunN0pOMSRrcf2_GFmQvkkNB8TxvCt6qeo1wjgD9u4QwIK8BZQ0wSKzbJ9UG217UQ9f0T6sNAMdaguifVy9SugcAOXDYVIfvkYzT2QXPbigtc04sWPbBWUuRfGbXwdDs_MSuKd8Fk5jzbBfczL4uOboTsQ1elxnHU0hi78dEhpW43ZF02c7slvSdD3OYHl5Wz-w4J3r1d55VPz59vN1-qa--fb7cXlzVWkiea83bvRhF33LeQGMILfK97fcdtoPhBDRI4j0akrhHErzT2BsujB5M0zVoxFn1Zs09xvBzoZTVfViiL18qLlD02AxCFup8paZxJuW8DeVcXZ6hg9PBk3Vlf9GB5B1iA0V4-0goTKZfeRqXlNTl7uYxy1dWx5BSJKuO0R3G-KAQ1KkztXamSmfqT2eqLZJYpVRgP1H8d_d_rN8iWZj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313714839</pqid></control><display><type>article</type><title>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, X.-Y. ; Fan, P.-P. ; Liu, Y. ; Hou, G.-L. ; Wang, Q. ; Lv, M.-R.</creator><creatorcontrib>Li, X.-Y. ; Fan, P.-P. ; Liu, Y. ; Hou, G.-L. ; Wang, Q. ; Lv, M.-R.</creatorcontrib><description>Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.</description><identifier>ISSN: 0021-9037</identifier><identifier>EISSN: 1573-8647</identifier><identifier>DOI: 10.1007/s10812-019-00891-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Atomic/Molecular Structure and Spectra ; Least squares method ; Modelling ; Near infrared radiation ; Neural networks ; Phosphorus ; Physics ; Physics and Astronomy ; Potassium ; Reflectance ; Sandy loam ; Soil stability ; Soils ; Spectrum analysis ; Support vector machines</subject><ispartof>Journal of applied spectroscopy, 2019-09, Vol.86 (4), p.765-770</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</citedby><cites>FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10812-019-00891-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10812-019-00891-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, X.-Y.</creatorcontrib><creatorcontrib>Fan, P.-P.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Hou, G.-L.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Lv, M.-R.</creatorcontrib><title>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</title><title>Journal of applied spectroscopy</title><addtitle>J Appl Spectrosc</addtitle><description>Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Least squares method</subject><subject>Modelling</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Phosphorus</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potassium</subject><subject>Reflectance</subject><subject>Sandy loam</subject><subject>Soil stability</subject><subject>Soils</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>0021-9037</issn><issn>1573-8647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhhtRcFz9A54Cnjz0WpX0V47r-LWwq7KznkNPUunN0pOMSRrcf2_GFmQvkkNB8TxvCt6qeo1wjgD9u4QwIK8BZQ0wSKzbJ9UG217UQ9f0T6sNAMdaguifVy9SugcAOXDYVIfvkYzT2QXPbigtc04sWPbBWUuRfGbXwdDs_MSuKd8Fk5jzbBfczL4uOboTsQ1elxnHU0hi78dEhpW43ZF02c7slvSdD3OYHl5Wz-w4J3r1d55VPz59vN1-qa--fb7cXlzVWkiea83bvRhF33LeQGMILfK97fcdtoPhBDRI4j0akrhHErzT2BsujB5M0zVoxFn1Zs09xvBzoZTVfViiL18qLlD02AxCFup8paZxJuW8DeVcXZ6hg9PBk3Vlf9GB5B1iA0V4-0goTKZfeRqXlNTl7uYxy1dWx5BSJKuO0R3G-KAQ1KkztXamSmfqT2eqLZJYpVRgP1H8d_d_rN8iWZj5</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Li, X.-Y.</creator><creator>Fan, P.-P.</creator><creator>Liu, Y.</creator><creator>Hou, G.-L.</creator><creator>Wang, Q.</creator><creator>Lv, M.-R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190901</creationdate><title>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</title><author>Li, X.-Y. ; Fan, P.-P. ; Liu, Y. ; Hou, G.-L. ; Wang, Q. ; Lv, M.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Least squares method</topic><topic>Modelling</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Phosphorus</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potassium</topic><topic>Reflectance</topic><topic>Sandy loam</topic><topic>Soil stability</topic><topic>Soils</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.-Y.</creatorcontrib><creatorcontrib>Fan, P.-P.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Hou, G.-L.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Lv, M.-R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.-Y.</au><au>Fan, P.-P.</au><au>Liu, Y.</au><au>Hou, G.-L.</au><au>Wang, Q.</au><au>Lv, M.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</atitle><jtitle>Journal of applied spectroscopy</jtitle><stitle>J Appl Spectrosc</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>86</volume><issue>4</issue><spage>765</spage><epage>770</epage><pages>765-770</pages><issn>0021-9037</issn><eissn>1573-8647</eissn><abstract>Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10812-019-00891-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9037 |
ispartof | Journal of applied spectroscopy, 2019-09, Vol.86 (4), p.765-770 |
issn | 0021-9037 1573-8647 |
language | eng |
recordid | cdi_proquest_journals_2313714839 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Artificial neural networks Atomic/Molecular Structure and Spectra Least squares method Modelling Near infrared radiation Neural networks Phosphorus Physics Physics and Astronomy Potassium Reflectance Sandy loam Soil stability Soils Spectrum analysis Support vector machines |
title | Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Results%20of%20Different%20Modeling%20Methods%20in%20Soil%20Nutrient%20Concentrations%20Based%20on%20Spectral%20Technology&rft.jtitle=Journal%20of%20applied%20spectroscopy&rft.au=Li,%20X.-Y.&rft.date=2019-09-01&rft.volume=86&rft.issue=4&rft.spage=765&rft.epage=770&rft.pages=765-770&rft.issn=0021-9037&rft.eissn=1573-8647&rft_id=info:doi/10.1007/s10812-019-00891-5&rft_dat=%3Cgale_proqu%3EA609261140%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313714839&rft_id=info:pmid/&rft_galeid=A609261140&rfr_iscdi=true |