Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology

Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied spectroscopy 2019-09, Vol.86 (4), p.765-770
Hauptverfasser: Li, X.-Y., Fan, P.-P., Liu, Y., Hou, G.-L., Wang, Q., Lv, M.-R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 770
container_issue 4
container_start_page 765
container_title Journal of applied spectroscopy
container_volume 86
creator Li, X.-Y.
Fan, P.-P.
Liu, Y.
Hou, G.-L.
Wang, Q.
Lv, M.-R.
description Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.
doi_str_mv 10.1007/s10812-019-00891-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2313714839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A609261140</galeid><sourcerecordid>A609261140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhhtRcFz9A54Cnjz0WpX0V47r-LWwq7KznkNPUunN0pOMSRrcf2_GFmQvkkNB8TxvCt6qeo1wjgD9u4QwIK8BZQ0wSKzbJ9UG217UQ9f0T6sNAMdaguifVy9SugcAOXDYVIfvkYzT2QXPbigtc04sWPbBWUuRfGbXwdDs_MSuKd8Fk5jzbBfczL4uOboTsQ1elxnHU0hi78dEhpW43ZF02c7slvSdD3OYHl5Wz-w4J3r1d55VPz59vN1-qa--fb7cXlzVWkiea83bvRhF33LeQGMILfK97fcdtoPhBDRI4j0akrhHErzT2BsujB5M0zVoxFn1Zs09xvBzoZTVfViiL18qLlD02AxCFup8paZxJuW8DeVcXZ6hg9PBk3Vlf9GB5B1iA0V4-0goTKZfeRqXlNTl7uYxy1dWx5BSJKuO0R3G-KAQ1KkztXamSmfqT2eqLZJYpVRgP1H8d_d_rN8iWZj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313714839</pqid></control><display><type>article</type><title>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, X.-Y. ; Fan, P.-P. ; Liu, Y. ; Hou, G.-L. ; Wang, Q. ; Lv, M.-R.</creator><creatorcontrib>Li, X.-Y. ; Fan, P.-P. ; Liu, Y. ; Hou, G.-L. ; Wang, Q. ; Lv, M.-R.</creatorcontrib><description>Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.</description><identifier>ISSN: 0021-9037</identifier><identifier>EISSN: 1573-8647</identifier><identifier>DOI: 10.1007/s10812-019-00891-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Atomic/Molecular Structure and Spectra ; Least squares method ; Modelling ; Near infrared radiation ; Neural networks ; Phosphorus ; Physics ; Physics and Astronomy ; Potassium ; Reflectance ; Sandy loam ; Soil stability ; Soils ; Spectrum analysis ; Support vector machines</subject><ispartof>Journal of applied spectroscopy, 2019-09, Vol.86 (4), p.765-770</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</citedby><cites>FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10812-019-00891-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10812-019-00891-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, X.-Y.</creatorcontrib><creatorcontrib>Fan, P.-P.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Hou, G.-L.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Lv, M.-R.</creatorcontrib><title>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</title><title>Journal of applied spectroscopy</title><addtitle>J Appl Spectrosc</addtitle><description>Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Least squares method</subject><subject>Modelling</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Phosphorus</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potassium</subject><subject>Reflectance</subject><subject>Sandy loam</subject><subject>Soil stability</subject><subject>Soils</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>0021-9037</issn><issn>1573-8647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhhtRcFz9A54Cnjz0WpX0V47r-LWwq7KznkNPUunN0pOMSRrcf2_GFmQvkkNB8TxvCt6qeo1wjgD9u4QwIK8BZQ0wSKzbJ9UG217UQ9f0T6sNAMdaguifVy9SugcAOXDYVIfvkYzT2QXPbigtc04sWPbBWUuRfGbXwdDs_MSuKd8Fk5jzbBfczL4uOboTsQ1elxnHU0hi78dEhpW43ZF02c7slvSdD3OYHl5Wz-w4J3r1d55VPz59vN1-qa--fb7cXlzVWkiea83bvRhF33LeQGMILfK97fcdtoPhBDRI4j0akrhHErzT2BsujB5M0zVoxFn1Zs09xvBzoZTVfViiL18qLlD02AxCFup8paZxJuW8DeVcXZ6hg9PBk3Vlf9GB5B1iA0V4-0goTKZfeRqXlNTl7uYxy1dWx5BSJKuO0R3G-KAQ1KkztXamSmfqT2eqLZJYpVRgP1H8d_d_rN8iWZj5</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Li, X.-Y.</creator><creator>Fan, P.-P.</creator><creator>Liu, Y.</creator><creator>Hou, G.-L.</creator><creator>Wang, Q.</creator><creator>Lv, M.-R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190901</creationdate><title>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</title><author>Li, X.-Y. ; Fan, P.-P. ; Liu, Y. ; Hou, G.-L. ; Wang, Q. ; Lv, M.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c25b3a37522404de1f12bf7b6158d2e0e89e271de91b1e326c17d23dc8d4641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Least squares method</topic><topic>Modelling</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Phosphorus</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potassium</topic><topic>Reflectance</topic><topic>Sandy loam</topic><topic>Soil stability</topic><topic>Soils</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.-Y.</creatorcontrib><creatorcontrib>Fan, P.-P.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Hou, G.-L.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><creatorcontrib>Lv, M.-R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.-Y.</au><au>Fan, P.-P.</au><au>Liu, Y.</au><au>Hou, G.-L.</au><au>Wang, Q.</au><au>Lv, M.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology</atitle><jtitle>Journal of applied spectroscopy</jtitle><stitle>J Appl Spectrosc</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>86</volume><issue>4</issue><spage>765</spage><epage>770</epage><pages>765-770</pages><issn>0021-9037</issn><eissn>1573-8647</eissn><abstract>Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10812-019-00891-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9037
ispartof Journal of applied spectroscopy, 2019-09, Vol.86 (4), p.765-770
issn 0021-9037
1573-8647
language eng
recordid cdi_proquest_journals_2313714839
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Artificial neural networks
Atomic/Molecular Structure and Spectra
Least squares method
Modelling
Near infrared radiation
Neural networks
Phosphorus
Physics
Physics and Astronomy
Potassium
Reflectance
Sandy loam
Soil stability
Soils
Spectrum analysis
Support vector machines
title Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Results%20of%20Different%20Modeling%20Methods%20in%20Soil%20Nutrient%20Concentrations%20Based%20on%20Spectral%20Technology&rft.jtitle=Journal%20of%20applied%20spectroscopy&rft.au=Li,%20X.-Y.&rft.date=2019-09-01&rft.volume=86&rft.issue=4&rft.spage=765&rft.epage=770&rft.pages=765-770&rft.issn=0021-9037&rft.eissn=1573-8647&rft_id=info:doi/10.1007/s10812-019-00891-5&rft_dat=%3Cgale_proqu%3EA609261140%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313714839&rft_id=info:pmid/&rft_galeid=A609261140&rfr_iscdi=true