Quantum Differentiability on Quantum Tori
We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-11, Vol.371 (3), p.1231-1260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 3 |
container_start_page | 1231 |
container_title | Communications in mathematical physics |
container_volume | 371 |
creator | Mcdonald, Edward Sukochev, Fedor Xiong, Xiao |
description | We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case. |
doi_str_mv | 10.1007/s00220-019-03384-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313713345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313713345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOCJw_RSWZ3mhylWhUKItRzSHYT2dLu1mSX0n_v6irePM3hve8NfIxdCrgRALPbBCAlcBCaA6LK-f6ITUSOkoMWdMwmAAI4kqBTdpbSGgC0JJqw69feNl2_ze7rEHz0TVdbV2_q7pC1TfYbrtpYn7OTYDfJX_zcKXtbPKzmT3z58vg8v1vyEgk7XqjCWV_JUKhcg3IqEDkqSu9CWUhfkXPee01lZbWWQpEiQsihKoMLViicsqtxdxfbj96nzqzbPjbDSyNR4Ewg5sXQkmOrjG1K0Qezi_XWxoMRYL6UmFGJGZSYbyVmP0A4QmkoN-8-_k3_Q30CtQFkJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313713345</pqid></control><display><type>article</type><title>Quantum Differentiability on Quantum Tori</title><source>SpringerNature Journals</source><creator>Mcdonald, Edward ; Sukochev, Fedor ; Xiong, Xiao</creator><creatorcontrib>Mcdonald, Edward ; Sukochev, Fedor ; Xiong, Xiao</creatorcontrib><description>We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03384-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical ; Toruses</subject><ispartof>Communications in mathematical physics, 2019-11, Vol.371 (3), p.1231-1260</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</citedby><cites>FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03384-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03384-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mcdonald, Edward</creatorcontrib><creatorcontrib>Sukochev, Fedor</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><title>Quantum Differentiability on Quantum Tori</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Toruses</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOCJw_RSWZ3mhylWhUKItRzSHYT2dLu1mSX0n_v6irePM3hve8NfIxdCrgRALPbBCAlcBCaA6LK-f6ITUSOkoMWdMwmAAI4kqBTdpbSGgC0JJqw69feNl2_ze7rEHz0TVdbV2_q7pC1TfYbrtpYn7OTYDfJX_zcKXtbPKzmT3z58vg8v1vyEgk7XqjCWV_JUKhcg3IqEDkqSu9CWUhfkXPee01lZbWWQpEiQsihKoMLViicsqtxdxfbj96nzqzbPjbDSyNR4Ewg5sXQkmOrjG1K0Qezi_XWxoMRYL6UmFGJGZSYbyVmP0A4QmkoN-8-_k3_Q30CtQFkJg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mcdonald, Edward</creator><creator>Sukochev, Fedor</creator><creator>Xiong, Xiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Quantum Differentiability on Quantum Tori</title><author>Mcdonald, Edward ; Sukochev, Fedor ; Xiong, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mcdonald, Edward</creatorcontrib><creatorcontrib>Sukochev, Fedor</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mcdonald, Edward</au><au>Sukochev, Fedor</au><au>Xiong, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Differentiability on Quantum Tori</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>371</volume><issue>3</issue><spage>1231</spage><epage>1260</epage><pages>1231-1260</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03384-w</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2019-11, Vol.371 (3), p.1231-1260 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2313713345 |
source | SpringerNature Journals |
subjects | Classical and Quantum Gravitation Complex Systems Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical Toruses |
title | Quantum Differentiability on Quantum Tori |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Differentiability%20on%20Quantum%20Tori&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Mcdonald,%20Edward&rft.date=2019-11-01&rft.volume=371&rft.issue=3&rft.spage=1231&rft.epage=1260&rft.pages=1231-1260&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03384-w&rft_dat=%3Cproquest_cross%3E2313713345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313713345&rft_id=info:pmid/&rfr_iscdi=true |