Quantum Differentiability on Quantum Tori

We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-11, Vol.371 (3), p.1231-1260
Hauptverfasser: Mcdonald, Edward, Sukochev, Fedor, Xiong, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1260
container_issue 3
container_start_page 1231
container_title Communications in mathematical physics
container_volume 371
creator Mcdonald, Edward
Sukochev, Fedor
Xiong, Xiao
description We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.
doi_str_mv 10.1007/s00220-019-03384-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313713345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313713345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOCJw_RSWZ3mhylWhUKItRzSHYT2dLu1mSX0n_v6irePM3hve8NfIxdCrgRALPbBCAlcBCaA6LK-f6ITUSOkoMWdMwmAAI4kqBTdpbSGgC0JJqw69feNl2_ze7rEHz0TVdbV2_q7pC1TfYbrtpYn7OTYDfJX_zcKXtbPKzmT3z58vg8v1vyEgk7XqjCWV_JUKhcg3IqEDkqSu9CWUhfkXPee01lZbWWQpEiQsihKoMLViicsqtxdxfbj96nzqzbPjbDSyNR4Ewg5sXQkmOrjG1K0Qezi_XWxoMRYL6UmFGJGZSYbyVmP0A4QmkoN-8-_k3_Q30CtQFkJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313713345</pqid></control><display><type>article</type><title>Quantum Differentiability on Quantum Tori</title><source>SpringerNature Journals</source><creator>Mcdonald, Edward ; Sukochev, Fedor ; Xiong, Xiao</creator><creatorcontrib>Mcdonald, Edward ; Sukochev, Fedor ; Xiong, Xiao</creatorcontrib><description>We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03384-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical ; Toruses</subject><ispartof>Communications in mathematical physics, 2019-11, Vol.371 (3), p.1231-1260</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</citedby><cites>FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03384-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03384-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mcdonald, Edward</creatorcontrib><creatorcontrib>Sukochev, Fedor</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><title>Quantum Differentiability on Quantum Tori</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Toruses</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOCJw_RSWZ3mhylWhUKItRzSHYT2dLu1mSX0n_v6irePM3hve8NfIxdCrgRALPbBCAlcBCaA6LK-f6ITUSOkoMWdMwmAAI4kqBTdpbSGgC0JJqw69feNl2_ze7rEHz0TVdbV2_q7pC1TfYbrtpYn7OTYDfJX_zcKXtbPKzmT3z58vg8v1vyEgk7XqjCWV_JUKhcg3IqEDkqSu9CWUhfkXPee01lZbWWQpEiQsihKoMLViicsqtxdxfbj96nzqzbPjbDSyNR4Ewg5sXQkmOrjG1K0Qezi_XWxoMRYL6UmFGJGZSYbyVmP0A4QmkoN-8-_k3_Q30CtQFkJg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mcdonald, Edward</creator><creator>Sukochev, Fedor</creator><creator>Xiong, Xiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Quantum Differentiability on Quantum Tori</title><author>Mcdonald, Edward ; Sukochev, Fedor ; Xiong, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-585baed2f584908b8f66b65cebfc52ed6bbeee96cda9921868663040dcfbfa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mcdonald, Edward</creatorcontrib><creatorcontrib>Sukochev, Fedor</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mcdonald, Edward</au><au>Sukochev, Fedor</au><au>Xiong, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Differentiability on Quantum Tori</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>371</volume><issue>3</issue><spage>1231</spage><epage>1260</epage><pages>1231-1260</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03384-w</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-11, Vol.371 (3), p.1231-1260
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2313713345
source SpringerNature Journals
subjects Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
Toruses
title Quantum Differentiability on Quantum Tori
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Differentiability%20on%20Quantum%20Tori&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Mcdonald,%20Edward&rft.date=2019-11-01&rft.volume=371&rft.issue=3&rft.spage=1231&rft.epage=1260&rft.pages=1231-1260&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03384-w&rft_dat=%3Cproquest_cross%3E2313713345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313713345&rft_id=info:pmid/&rfr_iscdi=true