Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation
A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic in...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-11, Vol.29 (46), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 46 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 29 |
creator | Ju, Duckhyun Kim, Daegun Yook, Hyunwoo Han, Jeong Woo Cho, Kilwon |
description | A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25).
The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient. |
doi_str_mv | 10.1002/adfm.201905590 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313498738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313498738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOKevPgd87kyaJm18G_vQwWTDVfAtpOmNdrTNTLvJ_ns7J_PRp_vB-d3DPQjdUjKghIT3OrfVICRUEs4lOUM9KqgIGAmT81NP3y7RVdOsCaFxzKIeUiNXt96VZVG_40kJphuaVreFwbO6Ba9NW7gaFzVeTsaL9GG5WuHW4cUOvHEV4PQDfOXgB-yY1OscnLX4BUp9IK_RhdVlAze_tY9ep5N09BTMF4-z0XAeGMYFCYQhXAhtQmFtFCcmoVGsue62EbAoyrm0BHIOGZEsyU0Wh5LJMKY0g0yyXLI-ujve3Xj3uYWmVWu39XVnqUJGWSSTmCWdanBUme7LxoNVG19U2u8VJeoQojqEqE4hdoA8Al9FCft_1Go4nj7_sd9f1HYu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313498738</pqid></control><display><type>article</type><title>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ju, Duckhyun ; Kim, Daegun ; Yook, Hyunwoo ; Han, Jeong Woo ; Cho, Kilwon</creator><creatorcontrib>Ju, Duckhyun ; Kim, Daegun ; Yook, Hyunwoo ; Han, Jeong Woo ; Cho, Kilwon</creatorcontrib><description>A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25).
The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905590</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Conducting polymers ; doping ; Electrical resistivity ; electrostatic interaction ; Figure of merit ; Materials science ; Molecular conformation ; Morphology ; PEDOT:PSS ; Polystyrene resins ; Power factor ; Seebeck effect ; Thermoelectricity ; thermoelectrics ; Tradeoffs</subject><ispartof>Advanced functional materials, 2019-11, Vol.29 (46), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</citedby><cites>FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</cites><orcidid>0000-0003-0321-3629 ; 0000-0001-5676-5844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201905590$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201905590$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ju, Duckhyun</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Yook, Hyunwoo</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><title>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</title><title>Advanced functional materials</title><description>A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25).
The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.</description><subject>Charge transport</subject><subject>Conducting polymers</subject><subject>doping</subject><subject>Electrical resistivity</subject><subject>electrostatic interaction</subject><subject>Figure of merit</subject><subject>Materials science</subject><subject>Molecular conformation</subject><subject>Morphology</subject><subject>PEDOT:PSS</subject><subject>Polystyrene resins</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><subject>Tradeoffs</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkN1LwzAUxYMoOKevPgd87kyaJm18G_vQwWTDVfAtpOmNdrTNTLvJ_ns7J_PRp_vB-d3DPQjdUjKghIT3OrfVICRUEs4lOUM9KqgIGAmT81NP3y7RVdOsCaFxzKIeUiNXt96VZVG_40kJphuaVreFwbO6Ba9NW7gaFzVeTsaL9GG5WuHW4cUOvHEV4PQDfOXgB-yY1OscnLX4BUp9IK_RhdVlAze_tY9ep5N09BTMF4-z0XAeGMYFCYQhXAhtQmFtFCcmoVGsue62EbAoyrm0BHIOGZEsyU0Wh5LJMKY0g0yyXLI-ujve3Xj3uYWmVWu39XVnqUJGWSSTmCWdanBUme7LxoNVG19U2u8VJeoQojqEqE4hdoA8Al9FCft_1Go4nj7_sd9f1HYu</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ju, Duckhyun</creator><creator>Kim, Daegun</creator><creator>Yook, Hyunwoo</creator><creator>Han, Jeong Woo</creator><creator>Cho, Kilwon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid><orcidid>https://orcid.org/0000-0001-5676-5844</orcidid></search><sort><creationdate>20191101</creationdate><title>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</title><author>Ju, Duckhyun ; Kim, Daegun ; Yook, Hyunwoo ; Han, Jeong Woo ; Cho, Kilwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transport</topic><topic>Conducting polymers</topic><topic>doping</topic><topic>Electrical resistivity</topic><topic>electrostatic interaction</topic><topic>Figure of merit</topic><topic>Materials science</topic><topic>Molecular conformation</topic><topic>Morphology</topic><topic>PEDOT:PSS</topic><topic>Polystyrene resins</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Duckhyun</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Yook, Hyunwoo</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Duckhyun</au><au>Kim, Daegun</au><au>Yook, Hyunwoo</au><au>Han, Jeong Woo</au><au>Cho, Kilwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</atitle><jtitle>Advanced functional materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25).
The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905590</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid><orcidid>https://orcid.org/0000-0001-5676-5844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2019-11, Vol.29 (46), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2313498738 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Charge transport Conducting polymers doping Electrical resistivity electrostatic interaction Figure of merit Materials science Molecular conformation Morphology PEDOT:PSS Polystyrene resins Power factor Seebeck effect Thermoelectricity thermoelectrics Tradeoffs |
title | Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Electrostatic%20Interaction%20in%20PEDOT:PSS%20to%20Overcome%20Thermoelectric%20Tradeoff%20Relation&rft.jtitle=Advanced%20functional%20materials&rft.au=Ju,%20Duckhyun&rft.date=2019-11-01&rft.volume=29&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905590&rft_dat=%3Cproquest_cross%3E2313498738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313498738&rft_id=info:pmid/&rfr_iscdi=true |