Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation

A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-11, Vol.29 (46), p.n/a
Hauptverfasser: Ju, Duckhyun, Kim, Daegun, Yook, Hyunwoo, Han, Jeong Woo, Cho, Kilwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 29
creator Ju, Duckhyun
Kim, Daegun
Yook, Hyunwoo
Han, Jeong Woo
Cho, Kilwon
description A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25). The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.
doi_str_mv 10.1002/adfm.201905590
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313498738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313498738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOKevPgd87kyaJm18G_vQwWTDVfAtpOmNdrTNTLvJ_ns7J_PRp_vB-d3DPQjdUjKghIT3OrfVICRUEs4lOUM9KqgIGAmT81NP3y7RVdOsCaFxzKIeUiNXt96VZVG_40kJphuaVreFwbO6Ba9NW7gaFzVeTsaL9GG5WuHW4cUOvHEV4PQDfOXgB-yY1OscnLX4BUp9IK_RhdVlAze_tY9ep5N09BTMF4-z0XAeGMYFCYQhXAhtQmFtFCcmoVGsue62EbAoyrm0BHIOGZEsyU0Wh5LJMKY0g0yyXLI-ujve3Xj3uYWmVWu39XVnqUJGWSSTmCWdanBUme7LxoNVG19U2u8VJeoQojqEqE4hdoA8Al9FCft_1Go4nj7_sd9f1HYu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313498738</pqid></control><display><type>article</type><title>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ju, Duckhyun ; Kim, Daegun ; Yook, Hyunwoo ; Han, Jeong Woo ; Cho, Kilwon</creator><creatorcontrib>Ju, Duckhyun ; Kim, Daegun ; Yook, Hyunwoo ; Han, Jeong Woo ; Cho, Kilwon</creatorcontrib><description>A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25). The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905590</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Conducting polymers ; doping ; Electrical resistivity ; electrostatic interaction ; Figure of merit ; Materials science ; Molecular conformation ; Morphology ; PEDOT:PSS ; Polystyrene resins ; Power factor ; Seebeck effect ; Thermoelectricity ; thermoelectrics ; Tradeoffs</subject><ispartof>Advanced functional materials, 2019-11, Vol.29 (46), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</citedby><cites>FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</cites><orcidid>0000-0003-0321-3629 ; 0000-0001-5676-5844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201905590$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201905590$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ju, Duckhyun</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Yook, Hyunwoo</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><title>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</title><title>Advanced functional materials</title><description>A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25). The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.</description><subject>Charge transport</subject><subject>Conducting polymers</subject><subject>doping</subject><subject>Electrical resistivity</subject><subject>electrostatic interaction</subject><subject>Figure of merit</subject><subject>Materials science</subject><subject>Molecular conformation</subject><subject>Morphology</subject><subject>PEDOT:PSS</subject><subject>Polystyrene resins</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><subject>Tradeoffs</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkN1LwzAUxYMoOKevPgd87kyaJm18G_vQwWTDVfAtpOmNdrTNTLvJ_ns7J_PRp_vB-d3DPQjdUjKghIT3OrfVICRUEs4lOUM9KqgIGAmT81NP3y7RVdOsCaFxzKIeUiNXt96VZVG_40kJphuaVreFwbO6Ba9NW7gaFzVeTsaL9GG5WuHW4cUOvHEV4PQDfOXgB-yY1OscnLX4BUp9IK_RhdVlAze_tY9ep5N09BTMF4-z0XAeGMYFCYQhXAhtQmFtFCcmoVGsue62EbAoyrm0BHIOGZEsyU0Wh5LJMKY0g0yyXLI-ujve3Xj3uYWmVWu39XVnqUJGWSSTmCWdanBUme7LxoNVG19U2u8VJeoQojqEqE4hdoA8Al9FCft_1Go4nj7_sd9f1HYu</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ju, Duckhyun</creator><creator>Kim, Daegun</creator><creator>Yook, Hyunwoo</creator><creator>Han, Jeong Woo</creator><creator>Cho, Kilwon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid><orcidid>https://orcid.org/0000-0001-5676-5844</orcidid></search><sort><creationdate>20191101</creationdate><title>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</title><author>Ju, Duckhyun ; Kim, Daegun ; Yook, Hyunwoo ; Han, Jeong Woo ; Cho, Kilwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3560-6c0566ac26ff478c8147a5ac054e344d59f0ed5eb0938dcb729392711beb93d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transport</topic><topic>Conducting polymers</topic><topic>doping</topic><topic>Electrical resistivity</topic><topic>electrostatic interaction</topic><topic>Figure of merit</topic><topic>Materials science</topic><topic>Molecular conformation</topic><topic>Morphology</topic><topic>PEDOT:PSS</topic><topic>Polystyrene resins</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Duckhyun</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Yook, Hyunwoo</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Duckhyun</au><au>Kim, Daegun</au><au>Yook, Hyunwoo</au><au>Han, Jeong Woo</au><au>Cho, Kilwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation</atitle><jtitle>Advanced functional materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A high power factor must be achieved to improve the thermoelectric (TE) output of organic TE materials though the tradeoff between electrical conductivity and the Seebeck coefficient is a serious obstacle to the further development of these materials. Here, systematic control of the electrostatic interaction between a conducting polymer and a dopant induces a positive deviation from this TE tradeoff relation so that the electrical conductivity and the Seebeck coefficient simultaneously increase. Upon reduction of the electrostatic interaction, substantial changes in the film morphology, chain conformation, and crystalline ordering are observed, all of which critically affect the TE charge transport. As a result, the electrostatic interaction control is found to be an effective strategy to enhance the power factor, overcoming the tradeoff between TE parameters. Adapting this strategy to poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate results in a remarkable power factor (=700.2 µW m−1 K−2 ) and figure of merit ZT (=0.25). The electrostatic interaction in poly(3,4‐ethylenedioxythiophene):polystyrene‐sulfonate (PEDOT:PSS) is systematically controlled by adding small‐molecule anions of different physical properties. This system facilitates effective charge transport and controls the oxidation level of PEDOT:PSS, which enhances the thermoelectric (TE) power factor to 700.2 µW m−1 K−2 by overcoming the TE tradeoff relation between the electrical conductivity and the Seebeck coefficient.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905590</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid><orcidid>https://orcid.org/0000-0001-5676-5844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-11, Vol.29 (46), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2313498738
source Wiley Online Library Journals Frontfile Complete
subjects Charge transport
Conducting polymers
doping
Electrical resistivity
electrostatic interaction
Figure of merit
Materials science
Molecular conformation
Morphology
PEDOT:PSS
Polystyrene resins
Power factor
Seebeck effect
Thermoelectricity
thermoelectrics
Tradeoffs
title Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Electrostatic%20Interaction%20in%20PEDOT:PSS%20to%20Overcome%20Thermoelectric%20Tradeoff%20Relation&rft.jtitle=Advanced%20functional%20materials&rft.au=Ju,%20Duckhyun&rft.date=2019-11-01&rft.volume=29&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905590&rft_dat=%3Cproquest_cross%3E2313498738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313498738&rft_id=info:pmid/&rfr_iscdi=true