Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension
We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Brooks, Morris Giacomo Di Gesù |
description | We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the \(L^2\) spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisifies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2313444800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313444800</sourcerecordid><originalsourceid>FETCH-proquest_journals_23134448003</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLqRJqt1tvQxOCo4l4qmmpCc1l_fXwQdw-ofvn7FMSFkWtRJiwfIQBs652GxFVcmMHS4v7Se4JiK0hp7QhmhGHTFA7zxoaFy6WyxuaC2c3QMtGIIT9YZMRGjMiBSMoxWb99oGzH9dsvW-ve6OxeTdO2GI3eCSpy91QpZSKVVzLv-7Pq_oOu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313444800</pqid></control><display><type>article</type><title>Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension</title><source>Free E- Journals</source><creator>Brooks, Morris ; Giacomo Di Gesù</creator><creatorcontrib>Brooks, Morris ; Giacomo Di Gesù</creatorcontrib><description>We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the \(L^2\) spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisifies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Estimates</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Brooks, Morris</creatorcontrib><creatorcontrib>Giacomo Di Gesù</creatorcontrib><title>Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension</title><title>arXiv.org</title><description>We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the \(L^2\) spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisifies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.</description><subject>Eigenvalues</subject><subject>Estimates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLqRJqt1tvQxOCo4l4qmmpCc1l_fXwQdw-ofvn7FMSFkWtRJiwfIQBs652GxFVcmMHS4v7Se4JiK0hp7QhmhGHTFA7zxoaFy6WyxuaC2c3QMtGIIT9YZMRGjMiBSMoxWb99oGzH9dsvW-ve6OxeTdO2GI3eCSpy91QpZSKVVzLv-7Pq_oOu8</recordid><startdate>20191108</startdate><enddate>20191108</enddate><creator>Brooks, Morris</creator><creator>Giacomo Di Gesù</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191108</creationdate><title>Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension</title><author>Brooks, Morris ; Giacomo Di Gesù</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23134448003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Eigenvalues</topic><topic>Estimates</topic><toplevel>online_resources</toplevel><creatorcontrib>Brooks, Morris</creatorcontrib><creatorcontrib>Giacomo Di Gesù</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, Morris</au><au>Giacomo Di Gesù</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension</atitle><jtitle>arXiv.org</jtitle><date>2019-11-08</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the \(L^2\) spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisifies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2313444800 |
source | Free E- Journals |
subjects | Eigenvalues Estimates |
title | Sharp Tunneling Estimates for a Double-Well Model in Infinite Dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sharp%20Tunneling%20Estimates%20for%20a%20Double-Well%20Model%20in%20Infinite%20Dimension&rft.jtitle=arXiv.org&rft.au=Brooks,%20Morris&rft.date=2019-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2313444800%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313444800&rft_id=info:pmid/&rfr_iscdi=true |