Flow analysis of a shock wave at pulse ionization: Riemann problem implementation
An experimental study of the plasma-gas dynamic fluid formed after pulse ionization of the gas flow with a plane shock wave with Mach number 2.2–4.8 is carried out. Nanosecond volume discharge with UV preionization was switched on when the shock moved in a tube channel test section. Energy input occ...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2019-11, Vol.31 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 31 |
creator | Znamenskaya, I. Mursenkova, I. Doroshchenko, I. Ivanov, I. |
description | An experimental study of the plasma-gas dynamic fluid formed after pulse ionization of the gas flow with a plane shock wave with Mach number 2.2–4.8 is carried out. Nanosecond volume discharge with UV preionization was switched on when the shock moved in a tube channel test section. Energy input occurs in the low-pressure gas volume separated by the shock surface within a time less than 200–300 ns; a single shock wave breaks into three discontinuities in accordance with the 1D Riemann problem solution. The initial (plasma-dynamic) stage of the flow in the nanosecond time range is visualized by glow recording; the supersonic gas processes in the microsecond time range are recorded using high-speed shadow imaging. Quantitative information about the dynamics of the shocks and contact surface (plots of horizontal distance) was obtained within time up to 25 µs. A region with an increased gas-discharge plasma glow intensity, after the discharge electric current termination, was recorded in the time interval from 0.3 to 1.5 µs; it was explained by a jump in gas temperature and density between the new shock wave and the contact discontinuity. |
doi_str_mv | 10.1063/1.5125884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2313430233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313430233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-af9970633f67c0fce0ea5f903ed4780517a0fad651ddb8103642e8ce194043133</originalsourceid><addsrcrecordid>eNqdkFFLwzAUhYMoOKcP_oOATwqdN02btL7J2FQYiKLPIUsTzGybmnQb89eb2YHvPp0L57uXew5ClwQmBBi9JZOcpHlRZEdoRKAoE84YO97PHBLGKDlFZyGsAICWKRuhl3nttli2st4FG7AzWOLw4dQn3sqNxrLH3boOGlvX2m_ZR7nDr1Y3sm1x592y1g22TRdFt_2vf45OjIwrFwcdo_f57G36mCyeH56m94tE0ZT3iTRlyePH1DCuwCgNWuamBKqrjBeQEy7ByIrlpKqWBQHKslQXSpMyg4wSSsfoargb3_ha69CLlVv7GCSINPoZhZTuqeuBUt6F4LURnbeN9DtBQOwbE0QcGovszcAGZYcs_4M3zv-BoqsM_QGzEXkK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313430233</pqid></control><display><type>article</type><title>Flow analysis of a shock wave at pulse ionization: Riemann problem implementation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Znamenskaya, I. ; Mursenkova, I. ; Doroshchenko, I. ; Ivanov, I.</creator><creatorcontrib>Znamenskaya, I. ; Mursenkova, I. ; Doroshchenko, I. ; Ivanov, I.</creatorcontrib><description>An experimental study of the plasma-gas dynamic fluid formed after pulse ionization of the gas flow with a plane shock wave with Mach number 2.2–4.8 is carried out. Nanosecond volume discharge with UV preionization was switched on when the shock moved in a tube channel test section. Energy input occurs in the low-pressure gas volume separated by the shock surface within a time less than 200–300 ns; a single shock wave breaks into three discontinuities in accordance with the 1D Riemann problem solution. The initial (plasma-dynamic) stage of the flow in the nanosecond time range is visualized by glow recording; the supersonic gas processes in the microsecond time range are recorded using high-speed shadow imaging. Quantitative information about the dynamics of the shocks and contact surface (plots of horizontal distance) was obtained within time up to 25 µs. A region with an increased gas-discharge plasma glow intensity, after the discharge electric current termination, was recorded in the time interval from 0.3 to 1.5 µs; it was explained by a jump in gas temperature and density between the new shock wave and the contact discontinuity.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5125884</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cauchy problems ; Electric contacts ; Fluid dynamics ; Gas flow ; Gas temperature ; Ionization ; Low pressure gases ; Mach number ; Physics ; Preionization ; Recording ; Shock waves</subject><ispartof>Physics of fluids (1994), 2019-11, Vol.31 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-af9970633f67c0fce0ea5f903ed4780517a0fad651ddb8103642e8ce194043133</citedby><cites>FETCH-LOGICAL-c327t-af9970633f67c0fce0ea5f903ed4780517a0fad651ddb8103642e8ce194043133</cites><orcidid>0000-0002-7181-4533 ; 0000-0002-0488-0020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Znamenskaya, I.</creatorcontrib><creatorcontrib>Mursenkova, I.</creatorcontrib><creatorcontrib>Doroshchenko, I.</creatorcontrib><creatorcontrib>Ivanov, I.</creatorcontrib><title>Flow analysis of a shock wave at pulse ionization: Riemann problem implementation</title><title>Physics of fluids (1994)</title><description>An experimental study of the plasma-gas dynamic fluid formed after pulse ionization of the gas flow with a plane shock wave with Mach number 2.2–4.8 is carried out. Nanosecond volume discharge with UV preionization was switched on when the shock moved in a tube channel test section. Energy input occurs in the low-pressure gas volume separated by the shock surface within a time less than 200–300 ns; a single shock wave breaks into three discontinuities in accordance with the 1D Riemann problem solution. The initial (plasma-dynamic) stage of the flow in the nanosecond time range is visualized by glow recording; the supersonic gas processes in the microsecond time range are recorded using high-speed shadow imaging. Quantitative information about the dynamics of the shocks and contact surface (plots of horizontal distance) was obtained within time up to 25 µs. A region with an increased gas-discharge plasma glow intensity, after the discharge electric current termination, was recorded in the time interval from 0.3 to 1.5 µs; it was explained by a jump in gas temperature and density between the new shock wave and the contact discontinuity.</description><subject>Cauchy problems</subject><subject>Electric contacts</subject><subject>Fluid dynamics</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Ionization</subject><subject>Low pressure gases</subject><subject>Mach number</subject><subject>Physics</subject><subject>Preionization</subject><subject>Recording</subject><subject>Shock waves</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkFFLwzAUhYMoOKcP_oOATwqdN02btL7J2FQYiKLPIUsTzGybmnQb89eb2YHvPp0L57uXew5ClwQmBBi9JZOcpHlRZEdoRKAoE84YO97PHBLGKDlFZyGsAICWKRuhl3nttli2st4FG7AzWOLw4dQn3sqNxrLH3boOGlvX2m_ZR7nDr1Y3sm1x592y1g22TRdFt_2vf45OjIwrFwcdo_f57G36mCyeH56m94tE0ZT3iTRlyePH1DCuwCgNWuamBKqrjBeQEy7ByIrlpKqWBQHKslQXSpMyg4wSSsfoargb3_ha69CLlVv7GCSINPoZhZTuqeuBUt6F4LURnbeN9DtBQOwbE0QcGovszcAGZYcs_4M3zv-BoqsM_QGzEXkK</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Znamenskaya, I.</creator><creator>Mursenkova, I.</creator><creator>Doroshchenko, I.</creator><creator>Ivanov, I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7181-4533</orcidid><orcidid>https://orcid.org/0000-0002-0488-0020</orcidid></search><sort><creationdate>20191101</creationdate><title>Flow analysis of a shock wave at pulse ionization: Riemann problem implementation</title><author>Znamenskaya, I. ; Mursenkova, I. ; Doroshchenko, I. ; Ivanov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-af9970633f67c0fce0ea5f903ed4780517a0fad651ddb8103642e8ce194043133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cauchy problems</topic><topic>Electric contacts</topic><topic>Fluid dynamics</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Ionization</topic><topic>Low pressure gases</topic><topic>Mach number</topic><topic>Physics</topic><topic>Preionization</topic><topic>Recording</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Znamenskaya, I.</creatorcontrib><creatorcontrib>Mursenkova, I.</creatorcontrib><creatorcontrib>Doroshchenko, I.</creatorcontrib><creatorcontrib>Ivanov, I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Znamenskaya, I.</au><au>Mursenkova, I.</au><au>Doroshchenko, I.</au><au>Ivanov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow analysis of a shock wave at pulse ionization: Riemann problem implementation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>31</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>An experimental study of the plasma-gas dynamic fluid formed after pulse ionization of the gas flow with a plane shock wave with Mach number 2.2–4.8 is carried out. Nanosecond volume discharge with UV preionization was switched on when the shock moved in a tube channel test section. Energy input occurs in the low-pressure gas volume separated by the shock surface within a time less than 200–300 ns; a single shock wave breaks into three discontinuities in accordance with the 1D Riemann problem solution. The initial (plasma-dynamic) stage of the flow in the nanosecond time range is visualized by glow recording; the supersonic gas processes in the microsecond time range are recorded using high-speed shadow imaging. Quantitative information about the dynamics of the shocks and contact surface (plots of horizontal distance) was obtained within time up to 25 µs. A region with an increased gas-discharge plasma glow intensity, after the discharge electric current termination, was recorded in the time interval from 0.3 to 1.5 µs; it was explained by a jump in gas temperature and density between the new shock wave and the contact discontinuity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5125884</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7181-4533</orcidid><orcidid>https://orcid.org/0000-0002-0488-0020</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2019-11, Vol.31 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2313430233 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cauchy problems Electric contacts Fluid dynamics Gas flow Gas temperature Ionization Low pressure gases Mach number Physics Preionization Recording Shock waves |
title | Flow analysis of a shock wave at pulse ionization: Riemann problem implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20analysis%20of%20a%20shock%20wave%20at%20pulse%20ionization:%20Riemann%20problem%20implementation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Znamenskaya,%20I.&rft.date=2019-11-01&rft.volume=31&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5125884&rft_dat=%3Cproquest_scita%3E2313430233%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313430233&rft_id=info:pmid/&rfr_iscdi=true |