Blowout of non-premixed turbulent jet flames with coflow under microgravity condition
The blowout behavior of non-premixed turbulent coflow jet flames under microgravity environment was studied experimentally by utilizing a 3.6 s drop tower. Variations of flames leading to liftoff as well as blowout were examined by varying the coflow velocity and compared with those obtained under t...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2019-12, Vol.210, p.315-323 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The blowout behavior of non-premixed turbulent coflow jet flames under microgravity environment was studied experimentally by utilizing a 3.6 s drop tower. Variations of flames leading to liftoff as well as blowout were examined by varying the coflow velocity and compared with those obtained under the normal gravity condition. A modeling work was conducted to incorporate the effects of the gravity (buoyancy) and coflow velocity on blowout behavior. Major findings include: (1) the flame length in microgravity was longer than that in normal gravity and decreased with increasing coflow velocity. The flame in microgravity showed more intense yellow luminosity with larger sooting zone; (2) the flame liftoff height increased with increasing coflow velocity in both gravity levels. The flame base was closer to the burner in microgravity as compared with that in normal gravity; (3) the blowout velocity in microgravity was appreciably larger than that obtained in normal gravity; and (4) a physical model based on Damköhler number was developed by using similarity solutions to characterize the differences in the blowout limits considering both the coflow and gravity (buoyancy) effects. The proposed model can successfully predict the experimental data. This work provided new data and basic scaling analysis for blowout limit of non-premixed turbulent jet flames considering both the coflow and gravity (buoyancy) effects. |
---|---|
ISSN: | 0010-2180 1556-2921 |
DOI: | 10.1016/j.combustflame.2019.08.041 |