Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping

Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138192, Article 138192
Hauptverfasser: Wang, Cheng, Li, Tsung-Hsiung, Liao, Yi-Chia, Li, Chia-Lin, Jang, Jason Shian-Ching, Hsueh, Chun-Hway
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 138192
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 764
creator Wang, Cheng
Li, Tsung-Hsiung
Liao, Yi-Chia
Li, Chia-Lin
Jang, Jason Shian-Ching
Hsueh, Chun-Hway
description Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.
doi_str_mv 10.1016/j.msea.2019.138192
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313336986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319309785</els_id><sourcerecordid>2313336986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA161JTts14I0U54Q5QfQ6pM3pmrElNemU_Xs75rVXBw7vcz4eQm45Sznjxf0m3UXUqWBcphxKLsUZmfByBkkmoTgnEyYFT3Im4ZJcxbhhjPGM5RPyvtDBOIyRamdoHAK69dBRdJ12De7QDZH6lla-CnN8dStLO7vukrEffH-gerv1B_pjR2RlqPG9detrctHqbcSbvzoln_Onj2qRLN-eX6rHZdKAKIcEWKuLQmKGBczy3ACTedlmZlbXAEZgDTkI2UrWFjLnQoKWcnxPM5Hp2kgNU3J3mtsH_7XHOKiN3wc3rlQCOAAUsizGlDilmuBjDNiqPtidDgfFmTq6Uxt1dKeO7tTJ3Qg9nCAc7_-2GFRsLI5CjA3YDMp4-x_-CwM_dpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313336986</pqid></control><display><type>article</type><title>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Cheng ; Li, Tsung-Hsiung ; Liao, Yi-Chia ; Li, Chia-Lin ; Jang, Jason Shian-Ching ; Hsueh, Chun-Hway</creator><creatorcontrib>Wang, Cheng ; Li, Tsung-Hsiung ; Liao, Yi-Chia ; Li, Chia-Lin ; Jang, Jason Shian-Ching ; Hsueh, Chun-Hway</creatorcontrib><description>Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138192</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloying elements ; Alloys ; Ductility ; Ductility tests ; Enthalpy ; Grain boundaries ; Hardness ; High entropy alloys ; High strength alloys ; Liquid phases ; Manganese ; Mechanical properties ; Microstructure ; Nanoindentation ; Nickel ; Phase separation ; Precipitates ; Precipitation hardening ; Solidification ; Tension tests</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138192, Article 138192</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 9, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</citedby><cites>FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.138192$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Tsung-Hsiung</creatorcontrib><creatorcontrib>Liao, Yi-Chia</creatorcontrib><creatorcontrib>Li, Chia-Lin</creatorcontrib><creatorcontrib>Jang, Jason Shian-Ching</creatorcontrib><creatorcontrib>Hsueh, Chun-Hway</creatorcontrib><title>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Ductility</subject><subject>Ductility tests</subject><subject>Enthalpy</subject><subject>Grain boundaries</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High strength alloys</subject><subject>Liquid phases</subject><subject>Manganese</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoindentation</subject><subject>Nickel</subject><subject>Phase separation</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Solidification</subject><subject>Tension tests</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA161JTts14I0U54Q5QfQ6pM3pmrElNemU_Xs75rVXBw7vcz4eQm45Sznjxf0m3UXUqWBcphxKLsUZmfByBkkmoTgnEyYFT3Im4ZJcxbhhjPGM5RPyvtDBOIyRamdoHAK69dBRdJ12De7QDZH6lla-CnN8dStLO7vukrEffH-gerv1B_pjR2RlqPG9detrctHqbcSbvzoln_Onj2qRLN-eX6rHZdKAKIcEWKuLQmKGBczy3ACTedlmZlbXAEZgDTkI2UrWFjLnQoKWcnxPM5Hp2kgNU3J3mtsH_7XHOKiN3wc3rlQCOAAUsizGlDilmuBjDNiqPtidDgfFmTq6Uxt1dKeO7tTJ3Qg9nCAc7_-2GFRsLI5CjA3YDMp4-x_-CwM_dpg</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Wang, Cheng</creator><creator>Li, Tsung-Hsiung</creator><creator>Liao, Yi-Chia</creator><creator>Li, Chia-Lin</creator><creator>Jang, Jason Shian-Ching</creator><creator>Hsueh, Chun-Hway</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190909</creationdate><title>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</title><author>Wang, Cheng ; Li, Tsung-Hsiung ; Liao, Yi-Chia ; Li, Chia-Lin ; Jang, Jason Shian-Ching ; Hsueh, Chun-Hway</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Ductility</topic><topic>Ductility tests</topic><topic>Enthalpy</topic><topic>Grain boundaries</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High strength alloys</topic><topic>Liquid phases</topic><topic>Manganese</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoindentation</topic><topic>Nickel</topic><topic>Phase separation</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Solidification</topic><topic>Tension tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Tsung-Hsiung</creatorcontrib><creatorcontrib>Liao, Yi-Chia</creatorcontrib><creatorcontrib>Li, Chia-Lin</creatorcontrib><creatorcontrib>Jang, Jason Shian-Ching</creatorcontrib><creatorcontrib>Hsueh, Chun-Hway</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cheng</au><au>Li, Tsung-Hsiung</au><au>Liao, Yi-Chia</au><au>Li, Chia-Lin</au><au>Jang, Jason Shian-Ching</au><au>Hsueh, Chun-Hway</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>764</volume><spage>138192</spage><pages>138192-</pages><artnum>138192</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138192</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138192, Article 138192
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2313336986
source ScienceDirect Journals (5 years ago - present)
subjects Alloying elements
Alloys
Ductility
Ductility tests
Enthalpy
Grain boundaries
Hardness
High entropy alloys
High strength alloys
Liquid phases
Manganese
Mechanical properties
Microstructure
Nanoindentation
Nickel
Phase separation
Precipitates
Precipitation hardening
Solidification
Tension tests
title Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20and%20strength%20enhancements%20of%20CoCrFeMnNi%20high-entropy%20alloy%20with%20Nd%20doping&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wang,%20Cheng&rft.date=2019-09-09&rft.volume=764&rft.spage=138192&rft.pages=138192-&rft.artnum=138192&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138192&rft_dat=%3Cproquest_cross%3E2313336986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313336986&rft_id=info:pmid/&rft_els_id=S0921509319309785&rfr_iscdi=true