Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping
Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However,...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138192, Article 138192 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 138192 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 764 |
creator | Wang, Cheng Li, Tsung-Hsiung Liao, Yi-Chia Li, Chia-Lin Jang, Jason Shian-Ching Hsueh, Chun-Hway |
description | Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests. |
doi_str_mv | 10.1016/j.msea.2019.138192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313336986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319309785</els_id><sourcerecordid>2313336986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA161JTts14I0U54Q5QfQ6pM3pmrElNemU_Xs75rVXBw7vcz4eQm45Sznjxf0m3UXUqWBcphxKLsUZmfByBkkmoTgnEyYFT3Im4ZJcxbhhjPGM5RPyvtDBOIyRamdoHAK69dBRdJ12De7QDZH6lla-CnN8dStLO7vukrEffH-gerv1B_pjR2RlqPG9detrctHqbcSbvzoln_Onj2qRLN-eX6rHZdKAKIcEWKuLQmKGBczy3ACTedlmZlbXAEZgDTkI2UrWFjLnQoKWcnxPM5Hp2kgNU3J3mtsH_7XHOKiN3wc3rlQCOAAUsizGlDilmuBjDNiqPtidDgfFmTq6Uxt1dKeO7tTJ3Qg9nCAc7_-2GFRsLI5CjA3YDMp4-x_-CwM_dpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313336986</pqid></control><display><type>article</type><title>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Cheng ; Li, Tsung-Hsiung ; Liao, Yi-Chia ; Li, Chia-Lin ; Jang, Jason Shian-Ching ; Hsueh, Chun-Hway</creator><creatorcontrib>Wang, Cheng ; Li, Tsung-Hsiung ; Liao, Yi-Chia ; Li, Chia-Lin ; Jang, Jason Shian-Ching ; Hsueh, Chun-Hway</creatorcontrib><description>Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138192</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloying elements ; Alloys ; Ductility ; Ductility tests ; Enthalpy ; Grain boundaries ; Hardness ; High entropy alloys ; High strength alloys ; Liquid phases ; Manganese ; Mechanical properties ; Microstructure ; Nanoindentation ; Nickel ; Phase separation ; Precipitates ; Precipitation hardening ; Solidification ; Tension tests</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138192, Article 138192</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 9, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</citedby><cites>FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.138192$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Tsung-Hsiung</creatorcontrib><creatorcontrib>Liao, Yi-Chia</creatorcontrib><creatorcontrib>Li, Chia-Lin</creatorcontrib><creatorcontrib>Jang, Jason Shian-Ching</creatorcontrib><creatorcontrib>Hsueh, Chun-Hway</creatorcontrib><title>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Ductility</subject><subject>Ductility tests</subject><subject>Enthalpy</subject><subject>Grain boundaries</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High strength alloys</subject><subject>Liquid phases</subject><subject>Manganese</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoindentation</subject><subject>Nickel</subject><subject>Phase separation</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Solidification</subject><subject>Tension tests</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA161JTts14I0U54Q5QfQ6pM3pmrElNemU_Xs75rVXBw7vcz4eQm45Sznjxf0m3UXUqWBcphxKLsUZmfByBkkmoTgnEyYFT3Im4ZJcxbhhjPGM5RPyvtDBOIyRamdoHAK69dBRdJ12De7QDZH6lla-CnN8dStLO7vukrEffH-gerv1B_pjR2RlqPG9detrctHqbcSbvzoln_Onj2qRLN-eX6rHZdKAKIcEWKuLQmKGBczy3ACTedlmZlbXAEZgDTkI2UrWFjLnQoKWcnxPM5Hp2kgNU3J3mtsH_7XHOKiN3wc3rlQCOAAUsizGlDilmuBjDNiqPtidDgfFmTq6Uxt1dKeO7tTJ3Qg9nCAc7_-2GFRsLI5CjA3YDMp4-x_-CwM_dpg</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Wang, Cheng</creator><creator>Li, Tsung-Hsiung</creator><creator>Liao, Yi-Chia</creator><creator>Li, Chia-Lin</creator><creator>Jang, Jason Shian-Ching</creator><creator>Hsueh, Chun-Hway</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190909</creationdate><title>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</title><author>Wang, Cheng ; Li, Tsung-Hsiung ; Liao, Yi-Chia ; Li, Chia-Lin ; Jang, Jason Shian-Ching ; Hsueh, Chun-Hway</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-30fa669e4e63755d30958f4d7bb33d2eb35329f90f6951293a99019a024abd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Ductility</topic><topic>Ductility tests</topic><topic>Enthalpy</topic><topic>Grain boundaries</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High strength alloys</topic><topic>Liquid phases</topic><topic>Manganese</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoindentation</topic><topic>Nickel</topic><topic>Phase separation</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Solidification</topic><topic>Tension tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Tsung-Hsiung</creatorcontrib><creatorcontrib>Liao, Yi-Chia</creatorcontrib><creatorcontrib>Li, Chia-Lin</creatorcontrib><creatorcontrib>Jang, Jason Shian-Ching</creatorcontrib><creatorcontrib>Hsueh, Chun-Hway</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cheng</au><au>Li, Tsung-Hsiung</au><au>Liao, Yi-Chia</au><au>Li, Chia-Lin</au><au>Jang, Jason Shian-Ching</au><au>Hsueh, Chun-Hway</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>764</volume><spage>138192</spage><pages>138192-</pages><artnum>138192</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Designing an alloy with both high strength and high ductility is a daunting challenge for structural materials. CoCrFeMnNi high-entropy alloy with FCC structure has been proven to be an ultra-ductile but low-strength alloy. Precipitation hardening is an effective way to solve this problem. However, the precipitation mechanisms are generally complex during the solidification process because of the composition with five or more elements in high-entropy alloys. We reported a designing concept that the liquid phase separation was used to simplify the mechanism of precipitates formation. The doped Nd separated from the matrix and precipitated with Ni and Mn because of the negative mixing enthalpy. Precipitation occurred randomly at grain boundaries and in the interior of grains. Compared to the single-phase FCC matrix, the hardness of HCP precipitates was three times of the matrix. The alloys were strengthened with good ductility and it was demonstrated by uniaxial tension tests.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138192</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138192, Article 138192 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2313336986 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alloying elements Alloys Ductility Ductility tests Enthalpy Grain boundaries Hardness High entropy alloys High strength alloys Liquid phases Manganese Mechanical properties Microstructure Nanoindentation Nickel Phase separation Precipitates Precipitation hardening Solidification Tension tests |
title | Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20and%20strength%20enhancements%20of%20CoCrFeMnNi%20high-entropy%20alloy%20with%20Nd%20doping&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wang,%20Cheng&rft.date=2019-09-09&rft.volume=764&rft.spage=138192&rft.pages=138192-&rft.artnum=138192&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138192&rft_dat=%3Cproquest_cross%3E2313336986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313336986&rft_id=info:pmid/&rft_els_id=S0921509319309785&rfr_iscdi=true |