High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation
A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of c...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138179, Article 138179 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 138179 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 764 |
creator | Suzawa, Kazuha Inoue, Shin-ichi Nishimoto, Soya Fuchigami, Seigo Yamasaki, Michiaki Kawamura, Yoshihito Yoshida, Katsuhito Kawabe, Nozomu |
description | A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively. |
doi_str_mv | 10.1016/j.msea.2019.138179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313336604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319309657</els_id><sourcerecordid>2313336604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</originalsourceid><addsrcrecordid>eNp9kMFqGzEURUVJoE7SH-hK0LUcaTSjsaCbYtqkkJJNskg2QtI82c-MpakkB7zJt2eMu-7qbe6593EI-Sr4UnChbnfLfQG7bLjQSyFXotefyEKseslaLdUFWXDdCNZxLT-Tq1J2nHPR8m5B3u9xs2WlZouRZVuBlsMEeRptqeixHqmNA60QC45AHWztG6ZMU6ABI7DNiYOB_tno_jWKl4bacUzHQoN1Gf3cN1B3pH6L021G51JkPsWSRhxsxRRvyGWwY4Ev_-41ef7182l9zx4e736vfzwwL3VbmWta2wytBAkKRBec4hY8-M5pvtK-V71TLvgA0gWthOUh-K4VHMKqVVoM8pp8O_dOOf09QKlmlw45zpOmkUJKqRRv51RzTvmcSskQzJRxb_PRCG5Ons3OnDybk2dz9jxD388QzP-_IWRTPEL0MGAGX82Q8H_4B1aQiTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313336604</pqid></control><display><type>article</type><title>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Suzawa, Kazuha ; Inoue, Shin-ichi ; Nishimoto, Soya ; Fuchigami, Seigo ; Yamasaki, Michiaki ; Kawamura, Yoshihito ; Yoshida, Katsuhito ; Kawabe, Nozomu</creator><creatorcontrib>Suzawa, Kazuha ; Inoue, Shin-ichi ; Nishimoto, Soya ; Fuchigami, Seigo ; Yamasaki, Michiaki ; Kawamura, Yoshihito ; Yoshida, Katsuhito ; Kawabe, Nozomu</creatorcontrib><description>A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138179</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Chip consolidation ; Chipping ; Consolidation ; Cooling ; Cooling rate ; Crystallography ; Dendritic structure ; Dynamic recrystallization ; Elongation ; Extreme values ; Extrusion rate ; Grain refinement ; Grain size ; High strength alloys ; Ingot casting ; Long-period stacking ordered phase ; Magnesium-zinc-yttrium ; Master alloys ; Melt spinning ; Morphology ; Precipitates ; Solidification ; Strain rate ; Superplasticity ; Twin-roll casting ; Yield strength</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138179, Article 138179</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 9, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</citedby><cites>FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.138179$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Suzawa, Kazuha</creatorcontrib><creatorcontrib>Inoue, Shin-ichi</creatorcontrib><creatorcontrib>Nishimoto, Soya</creatorcontrib><creatorcontrib>Fuchigami, Seigo</creatorcontrib><creatorcontrib>Yamasaki, Michiaki</creatorcontrib><creatorcontrib>Kawamura, Yoshihito</creatorcontrib><creatorcontrib>Yoshida, Katsuhito</creatorcontrib><creatorcontrib>Kawabe, Nozomu</creatorcontrib><title>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.</description><subject>Alloys</subject><subject>Chip consolidation</subject><subject>Chipping</subject><subject>Consolidation</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Crystallography</subject><subject>Dendritic structure</subject><subject>Dynamic recrystallization</subject><subject>Elongation</subject><subject>Extreme values</subject><subject>Extrusion rate</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>High strength alloys</subject><subject>Ingot casting</subject><subject>Long-period stacking ordered phase</subject><subject>Magnesium-zinc-yttrium</subject><subject>Master alloys</subject><subject>Melt spinning</subject><subject>Morphology</subject><subject>Precipitates</subject><subject>Solidification</subject><subject>Strain rate</subject><subject>Superplasticity</subject><subject>Twin-roll casting</subject><subject>Yield strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEURUVJoE7SH-hK0LUcaTSjsaCbYtqkkJJNskg2QtI82c-MpakkB7zJt2eMu-7qbe6593EI-Sr4UnChbnfLfQG7bLjQSyFXotefyEKseslaLdUFWXDdCNZxLT-Tq1J2nHPR8m5B3u9xs2WlZouRZVuBlsMEeRptqeixHqmNA60QC45AHWztG6ZMU6ABI7DNiYOB_tno_jWKl4bacUzHQoN1Gf3cN1B3pH6L021G51JkPsWSRhxsxRRvyGWwY4Ev_-41ef7182l9zx4e736vfzwwL3VbmWta2wytBAkKRBec4hY8-M5pvtK-V71TLvgA0gWthOUh-K4VHMKqVVoM8pp8O_dOOf09QKlmlw45zpOmkUJKqRRv51RzTvmcSskQzJRxb_PRCG5Ons3OnDybk2dz9jxD388QzP-_IWRTPEL0MGAGX82Q8H_4B1aQiTQ</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Suzawa, Kazuha</creator><creator>Inoue, Shin-ichi</creator><creator>Nishimoto, Soya</creator><creator>Fuchigami, Seigo</creator><creator>Yamasaki, Michiaki</creator><creator>Kawamura, Yoshihito</creator><creator>Yoshida, Katsuhito</creator><creator>Kawabe, Nozomu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190909</creationdate><title>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</title><author>Suzawa, Kazuha ; Inoue, Shin-ichi ; Nishimoto, Soya ; Fuchigami, Seigo ; Yamasaki, Michiaki ; Kawamura, Yoshihito ; Yoshida, Katsuhito ; Kawabe, Nozomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Chip consolidation</topic><topic>Chipping</topic><topic>Consolidation</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Crystallography</topic><topic>Dendritic structure</topic><topic>Dynamic recrystallization</topic><topic>Elongation</topic><topic>Extreme values</topic><topic>Extrusion rate</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>High strength alloys</topic><topic>Ingot casting</topic><topic>Long-period stacking ordered phase</topic><topic>Magnesium-zinc-yttrium</topic><topic>Master alloys</topic><topic>Melt spinning</topic><topic>Morphology</topic><topic>Precipitates</topic><topic>Solidification</topic><topic>Strain rate</topic><topic>Superplasticity</topic><topic>Twin-roll casting</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzawa, Kazuha</creatorcontrib><creatorcontrib>Inoue, Shin-ichi</creatorcontrib><creatorcontrib>Nishimoto, Soya</creatorcontrib><creatorcontrib>Fuchigami, Seigo</creatorcontrib><creatorcontrib>Yamasaki, Michiaki</creatorcontrib><creatorcontrib>Kawamura, Yoshihito</creatorcontrib><creatorcontrib>Yoshida, Katsuhito</creatorcontrib><creatorcontrib>Kawabe, Nozomu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzawa, Kazuha</au><au>Inoue, Shin-ichi</au><au>Nishimoto, Soya</au><au>Fuchigami, Seigo</au><au>Yamasaki, Michiaki</au><au>Kawamura, Yoshihito</au><au>Yoshida, Katsuhito</au><au>Kawabe, Nozomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>764</volume><spage>138179</spage><pages>138179-</pages><artnum>138179</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138179</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138179, Article 138179 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2313336604 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alloys Chip consolidation Chipping Consolidation Cooling Cooling rate Crystallography Dendritic structure Dynamic recrystallization Elongation Extreme values Extrusion rate Grain refinement Grain size High strength alloys Ingot casting Long-period stacking ordered phase Magnesium-zinc-yttrium Master alloys Melt spinning Morphology Precipitates Solidification Strain rate Superplasticity Twin-roll casting Yield strength |
title | High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-strain-rate%20superplasticity%20and%20tensile%20behavior%20of%20fine-grained%20Mg97Zn1Y2%20alloys%20fabricated%20by%20chip/ribbon-consolidation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Suzawa,%20Kazuha&rft.date=2019-09-09&rft.volume=764&rft.spage=138179&rft.pages=138179-&rft.artnum=138179&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138179&rft_dat=%3Cproquest_cross%3E2313336604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313336604&rft_id=info:pmid/&rft_els_id=S0921509319309657&rfr_iscdi=true |