High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation

A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138179, Article 138179
Hauptverfasser: Suzawa, Kazuha, Inoue, Shin-ichi, Nishimoto, Soya, Fuchigami, Seigo, Yamasaki, Michiaki, Kawamura, Yoshihito, Yoshida, Katsuhito, Kawabe, Nozomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 138179
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 764
creator Suzawa, Kazuha
Inoue, Shin-ichi
Nishimoto, Soya
Fuchigami, Seigo
Yamasaki, Michiaki
Kawamura, Yoshihito
Yoshida, Katsuhito
Kawabe, Nozomu
description A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.
doi_str_mv 10.1016/j.msea.2019.138179
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313336604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319309657</els_id><sourcerecordid>2313336604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</originalsourceid><addsrcrecordid>eNp9kMFqGzEURUVJoE7SH-hK0LUcaTSjsaCbYtqkkJJNskg2QtI82c-MpakkB7zJt2eMu-7qbe6593EI-Sr4UnChbnfLfQG7bLjQSyFXotefyEKseslaLdUFWXDdCNZxLT-Tq1J2nHPR8m5B3u9xs2WlZouRZVuBlsMEeRptqeixHqmNA60QC45AHWztG6ZMU6ABI7DNiYOB_tno_jWKl4bacUzHQoN1Gf3cN1B3pH6L021G51JkPsWSRhxsxRRvyGWwY4Ev_-41ef7182l9zx4e736vfzwwL3VbmWta2wytBAkKRBec4hY8-M5pvtK-V71TLvgA0gWthOUh-K4VHMKqVVoM8pp8O_dOOf09QKlmlw45zpOmkUJKqRRv51RzTvmcSskQzJRxb_PRCG5Ons3OnDybk2dz9jxD388QzP-_IWRTPEL0MGAGX82Q8H_4B1aQiTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313336604</pqid></control><display><type>article</type><title>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Suzawa, Kazuha ; Inoue, Shin-ichi ; Nishimoto, Soya ; Fuchigami, Seigo ; Yamasaki, Michiaki ; Kawamura, Yoshihito ; Yoshida, Katsuhito ; Kawabe, Nozomu</creator><creatorcontrib>Suzawa, Kazuha ; Inoue, Shin-ichi ; Nishimoto, Soya ; Fuchigami, Seigo ; Yamasaki, Michiaki ; Kawamura, Yoshihito ; Yoshida, Katsuhito ; Kawabe, Nozomu</creatorcontrib><description>A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138179</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Chip consolidation ; Chipping ; Consolidation ; Cooling ; Cooling rate ; Crystallography ; Dendritic structure ; Dynamic recrystallization ; Elongation ; Extreme values ; Extrusion rate ; Grain refinement ; Grain size ; High strength alloys ; Ingot casting ; Long-period stacking ordered phase ; Magnesium-zinc-yttrium ; Master alloys ; Melt spinning ; Morphology ; Precipitates ; Solidification ; Strain rate ; Superplasticity ; Twin-roll casting ; Yield strength</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138179, Article 138179</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 9, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</citedby><cites>FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.138179$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Suzawa, Kazuha</creatorcontrib><creatorcontrib>Inoue, Shin-ichi</creatorcontrib><creatorcontrib>Nishimoto, Soya</creatorcontrib><creatorcontrib>Fuchigami, Seigo</creatorcontrib><creatorcontrib>Yamasaki, Michiaki</creatorcontrib><creatorcontrib>Kawamura, Yoshihito</creatorcontrib><creatorcontrib>Yoshida, Katsuhito</creatorcontrib><creatorcontrib>Kawabe, Nozomu</creatorcontrib><title>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.</description><subject>Alloys</subject><subject>Chip consolidation</subject><subject>Chipping</subject><subject>Consolidation</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Crystallography</subject><subject>Dendritic structure</subject><subject>Dynamic recrystallization</subject><subject>Elongation</subject><subject>Extreme values</subject><subject>Extrusion rate</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>High strength alloys</subject><subject>Ingot casting</subject><subject>Long-period stacking ordered phase</subject><subject>Magnesium-zinc-yttrium</subject><subject>Master alloys</subject><subject>Melt spinning</subject><subject>Morphology</subject><subject>Precipitates</subject><subject>Solidification</subject><subject>Strain rate</subject><subject>Superplasticity</subject><subject>Twin-roll casting</subject><subject>Yield strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEURUVJoE7SH-hK0LUcaTSjsaCbYtqkkJJNskg2QtI82c-MpakkB7zJt2eMu-7qbe6593EI-Sr4UnChbnfLfQG7bLjQSyFXotefyEKseslaLdUFWXDdCNZxLT-Tq1J2nHPR8m5B3u9xs2WlZouRZVuBlsMEeRptqeixHqmNA60QC45AHWztG6ZMU6ABI7DNiYOB_tno_jWKl4bacUzHQoN1Gf3cN1B3pH6L021G51JkPsWSRhxsxRRvyGWwY4Ev_-41ef7182l9zx4e736vfzwwL3VbmWta2wytBAkKRBec4hY8-M5pvtK-V71TLvgA0gWthOUh-K4VHMKqVVoM8pp8O_dOOf09QKlmlw45zpOmkUJKqRRv51RzTvmcSskQzJRxb_PRCG5Ons3OnDybk2dz9jxD388QzP-_IWRTPEL0MGAGX82Q8H_4B1aQiTQ</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Suzawa, Kazuha</creator><creator>Inoue, Shin-ichi</creator><creator>Nishimoto, Soya</creator><creator>Fuchigami, Seigo</creator><creator>Yamasaki, Michiaki</creator><creator>Kawamura, Yoshihito</creator><creator>Yoshida, Katsuhito</creator><creator>Kawabe, Nozomu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190909</creationdate><title>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</title><author>Suzawa, Kazuha ; Inoue, Shin-ichi ; Nishimoto, Soya ; Fuchigami, Seigo ; Yamasaki, Michiaki ; Kawamura, Yoshihito ; Yoshida, Katsuhito ; Kawabe, Nozomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-b24a2d43e3e6e15fb60aecec5b9089c767b6bfcfe3bf961a0ffc5410ef84691d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Chip consolidation</topic><topic>Chipping</topic><topic>Consolidation</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Crystallography</topic><topic>Dendritic structure</topic><topic>Dynamic recrystallization</topic><topic>Elongation</topic><topic>Extreme values</topic><topic>Extrusion rate</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>High strength alloys</topic><topic>Ingot casting</topic><topic>Long-period stacking ordered phase</topic><topic>Magnesium-zinc-yttrium</topic><topic>Master alloys</topic><topic>Melt spinning</topic><topic>Morphology</topic><topic>Precipitates</topic><topic>Solidification</topic><topic>Strain rate</topic><topic>Superplasticity</topic><topic>Twin-roll casting</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzawa, Kazuha</creatorcontrib><creatorcontrib>Inoue, Shin-ichi</creatorcontrib><creatorcontrib>Nishimoto, Soya</creatorcontrib><creatorcontrib>Fuchigami, Seigo</creatorcontrib><creatorcontrib>Yamasaki, Michiaki</creatorcontrib><creatorcontrib>Kawamura, Yoshihito</creatorcontrib><creatorcontrib>Yoshida, Katsuhito</creatorcontrib><creatorcontrib>Kawabe, Nozomu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzawa, Kazuha</au><au>Inoue, Shin-ichi</au><au>Nishimoto, Soya</au><au>Fuchigami, Seigo</au><au>Yamasaki, Michiaki</au><au>Kawamura, Yoshihito</au><au>Yoshida, Katsuhito</au><au>Kawabe, Nozomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>764</volume><spage>138179</spage><pages>138179-</pages><artnum>138179</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A new combined processing procedure is applied to a Mg97Zn1Y2 alloy with a long-period stacking ordered (LPSO) phase. The procedure involves three processes: cooling-rate-controlled solidification, chipping of the solidified master alloy, and extrusion for chip/ribbon-consolidation. Three types of chip/ribbon-consolidated alloys are fabricated from gravity-cast ingots, twin-roll-cast sheets, and melt-spun ribbons using this procedure and are denoted as GCC, TCC, and RRC, respectively. The cooling rate in the cooling-rate-controlled solidification process strongly affects the grain size of the α-Mg matrix and the morphology of the LPSO phase; increasing the cooling rate promotes reduction of the dendrite arm spacing in addition to grain refinement. Extrusion during chip/ribbon-consolidation promotes dynamic recrystallization of α-Mg grains, resulting in the formation of fine equiaxed grains with random crystallographic orientation. The GCC alloy and the TCC alloy consist of fine dynamically recrystallized α-Mg grains and a small amount of worked LPSO grains. The RRC alloy has fine dynamically recrystallized α-Mg grains with thin basal plate-shaped LPSO phase precipitates in their interior. The GCC alloy and the TCC alloy show large elongation with reasonable strength and slight work-hardening after yielding. By contrast, the RRC alloy shows a high strength of more than 450 MPa, but the flow stress decreases with increasing strain during tensile testing. The TCC alloy and the RRC alloy exhibit high-strain-rate superplasticity at a strain rate of 3 × 10-2 s-1 and extremely large elongation values of ~600% and ~1000%, respectively.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138179</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764, p.138179, Article 138179
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2313336604
source Access via ScienceDirect (Elsevier)
subjects Alloys
Chip consolidation
Chipping
Consolidation
Cooling
Cooling rate
Crystallography
Dendritic structure
Dynamic recrystallization
Elongation
Extreme values
Extrusion rate
Grain refinement
Grain size
High strength alloys
Ingot casting
Long-period stacking ordered phase
Magnesium-zinc-yttrium
Master alloys
Melt spinning
Morphology
Precipitates
Solidification
Strain rate
Superplasticity
Twin-roll casting
Yield strength
title High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-strain-rate%20superplasticity%20and%20tensile%20behavior%20of%20fine-grained%20Mg97Zn1Y2%20alloys%20fabricated%20by%20chip/ribbon-consolidation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Suzawa,%20Kazuha&rft.date=2019-09-09&rft.volume=764&rft.spage=138179&rft.pages=138179-&rft.artnum=138179&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138179&rft_dat=%3Cproquest_cross%3E2313336604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313336604&rft_id=info:pmid/&rft_els_id=S0921509319309657&rfr_iscdi=true