3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications

Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2019-12, Vol.49 (12), p.1227-1238
Hauptverfasser: Gómez, Melisa J., Diaz, Liliana A., Franceschini, Esteban A., Lacconi, Gabriela I., Abuin, Graciela C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 12
container_start_page 1227
container_title Journal of applied electrochemistry
container_volume 49
creator Gómez, Melisa J.
Diaz, Liliana A.
Franceschini, Esteban A.
Lacconi, Gabriela I.
Abuin, Graciela C.
description Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements. Graphic abstract
doi_str_mv 10.1007/s10800-019-01361-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313166931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313166931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8V_OxTdKjrJ-w6kXBW0iT6dqlNjVJD4t_3uxW8CbMMMPMe2-Yh9A5JZeUEHkVKVGEFIRWObmghTpAM1pKVijF1SGaEcLysKLvx-gkxg0hpGJiMUPf_Ab3pvcxhdGmMYDDz-2Tx9Yk021jwtCBTcE7GHxsU177HnMqVjgm0_YdxJg7gA43PuCPrQt-DT3OCcGkNoPbXbgxH2hNh80wdK3db-IpOmpMF-Hst87R293t6_KhWL3cPy6vV4XlpUiFFI3hNXBjiQBTW864sFQwyZvalCUwV1WKulpWlC-oKoV0xkiQ3FmpCBd8ji4m3SH4rxFi0hs_hj6f1IzT_IyocpkjNqFs8DEGaPQQ2k8TtpoSvTNZTybrbLLem6xVJvGJFDO4X0P4k_6H9QPtB4GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313166931</pqid></control><display><type>article</type><title>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</title><source>SpringerNature Journals</source><creator>Gómez, Melisa J. ; Diaz, Liliana A. ; Franceschini, Esteban A. ; Lacconi, Gabriela I. ; Abuin, Graciela C.</creator><creatorcontrib>Gómez, Melisa J. ; Diaz, Liliana A. ; Franceschini, Esteban A. ; Lacconi, Gabriela I. ; Abuin, Graciela C.</creatorcontrib><description>Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements. Graphic abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-019-01361-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Austenitic stainless steels ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Corrosion resistance ; Electrochemistry ; High resistance ; Hydrogen evolution reactions ; Hydrogen production ; Industrial applications ; Industrial Chemistry/Chemical Engineering ; Microstructure ; Nanostructure ; Photoelectrons ; Physical Chemistry ; Raman spectra ; Research Article ; Spectrum analysis ; Stainless steel</subject><ispartof>Journal of applied electrochemistry, 2019-12, Vol.49 (12), p.1227-1238</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</citedby><cites>FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-019-01361-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-019-01361-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Gómez, Melisa J.</creatorcontrib><creatorcontrib>Diaz, Liliana A.</creatorcontrib><creatorcontrib>Franceschini, Esteban A.</creatorcontrib><creatorcontrib>Lacconi, Gabriela I.</creatorcontrib><creatorcontrib>Abuin, Graciela C.</creatorcontrib><title>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements. Graphic abstract</description><subject>Austenitic stainless steels</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion resistance</subject><subject>Electrochemistry</subject><subject>High resistance</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Raman spectra</subject><subject>Research Article</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8V_OxTdKjrJ-w6kXBW0iT6dqlNjVJD4t_3uxW8CbMMMPMe2-Yh9A5JZeUEHkVKVGEFIRWObmghTpAM1pKVijF1SGaEcLysKLvx-gkxg0hpGJiMUPf_Ab3pvcxhdGmMYDDz-2Tx9Yk021jwtCBTcE7GHxsU177HnMqVjgm0_YdxJg7gA43PuCPrQt-DT3OCcGkNoPbXbgxH2hNh80wdK3db-IpOmpMF-Hst87R293t6_KhWL3cPy6vV4XlpUiFFI3hNXBjiQBTW864sFQwyZvalCUwV1WKulpWlC-oKoV0xkiQ3FmpCBd8ji4m3SH4rxFi0hs_hj6f1IzT_IyocpkjNqFs8DEGaPQQ2k8TtpoSvTNZTybrbLLem6xVJvGJFDO4X0P4k_6H9QPtB4GQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gómez, Melisa J.</creator><creator>Diaz, Liliana A.</creator><creator>Franceschini, Esteban A.</creator><creator>Lacconi, Gabriela I.</creator><creator>Abuin, Graciela C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</title><author>Gómez, Melisa J. ; Diaz, Liliana A. ; Franceschini, Esteban A. ; Lacconi, Gabriela I. ; Abuin, Graciela C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion resistance</topic><topic>Electrochemistry</topic><topic>High resistance</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Raman spectra</topic><topic>Research Article</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Melisa J.</creatorcontrib><creatorcontrib>Diaz, Liliana A.</creatorcontrib><creatorcontrib>Franceschini, Esteban A.</creatorcontrib><creatorcontrib>Lacconi, Gabriela I.</creatorcontrib><creatorcontrib>Abuin, Graciela C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Melisa J.</au><au>Diaz, Liliana A.</au><au>Franceschini, Esteban A.</au><au>Lacconi, Gabriela I.</au><au>Abuin, Graciela C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>49</volume><issue>12</issue><spage>1227</spage><epage>1238</epage><pages>1227-1238</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-019-01361-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2019-12, Vol.49 (12), p.1227-1238
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2313166931
source SpringerNature Journals
subjects Austenitic stainless steels
Catalysts
Catalytic activity
Chemical synthesis
Chemistry
Chemistry and Materials Science
Corrosion resistance
Electrochemistry
High resistance
Hydrogen evolution reactions
Hydrogen production
Industrial applications
Industrial Chemistry/Chemical Engineering
Microstructure
Nanostructure
Photoelectrons
Physical Chemistry
Raman spectra
Research Article
Spectrum analysis
Stainless steel
title 3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20nanostructured%20NiMo%20catalyst%20electrodeposited%20on%20316L%20stainless%20steel%20for%20hydrogen%20generation%20in%20industrial%20applications&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=G%C3%B3mez,%20Melisa%20J.&rft.date=2019-12-01&rft.volume=49&rft.issue=12&rft.spage=1227&rft.epage=1238&rft.pages=1227-1238&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-019-01361-8&rft_dat=%3Cproquest_cross%3E2313166931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313166931&rft_id=info:pmid/&rfr_iscdi=true