3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications
Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L s...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2019-12, Vol.49 (12), p.1227-1238 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1238 |
---|---|
container_issue | 12 |
container_start_page | 1227 |
container_title | Journal of applied electrochemistry |
container_volume | 49 |
creator | Gómez, Melisa J. Diaz, Liliana A. Franceschini, Esteban A. Lacconi, Gabriela I. Abuin, Graciela C. |
description | Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements.
Graphic abstract |
doi_str_mv | 10.1007/s10800-019-01361-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313166931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313166931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8V_OxTdKjrJ-w6kXBW0iT6dqlNjVJD4t_3uxW8CbMMMPMe2-Yh9A5JZeUEHkVKVGEFIRWObmghTpAM1pKVijF1SGaEcLysKLvx-gkxg0hpGJiMUPf_Ab3pvcxhdGmMYDDz-2Tx9Yk021jwtCBTcE7GHxsU177HnMqVjgm0_YdxJg7gA43PuCPrQt-DT3OCcGkNoPbXbgxH2hNh80wdK3db-IpOmpMF-Hst87R293t6_KhWL3cPy6vV4XlpUiFFI3hNXBjiQBTW864sFQwyZvalCUwV1WKulpWlC-oKoV0xkiQ3FmpCBd8ji4m3SH4rxFi0hs_hj6f1IzT_IyocpkjNqFs8DEGaPQQ2k8TtpoSvTNZTybrbLLem6xVJvGJFDO4X0P4k_6H9QPtB4GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313166931</pqid></control><display><type>article</type><title>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</title><source>SpringerNature Journals</source><creator>Gómez, Melisa J. ; Diaz, Liliana A. ; Franceschini, Esteban A. ; Lacconi, Gabriela I. ; Abuin, Graciela C.</creator><creatorcontrib>Gómez, Melisa J. ; Diaz, Liliana A. ; Franceschini, Esteban A. ; Lacconi, Gabriela I. ; Abuin, Graciela C.</creatorcontrib><description>Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements.
Graphic abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-019-01361-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Austenitic stainless steels ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Corrosion resistance ; Electrochemistry ; High resistance ; Hydrogen evolution reactions ; Hydrogen production ; Industrial applications ; Industrial Chemistry/Chemical Engineering ; Microstructure ; Nanostructure ; Photoelectrons ; Physical Chemistry ; Raman spectra ; Research Article ; Spectrum analysis ; Stainless steel</subject><ispartof>Journal of applied electrochemistry, 2019-12, Vol.49 (12), p.1227-1238</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</citedby><cites>FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-019-01361-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-019-01361-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Gómez, Melisa J.</creatorcontrib><creatorcontrib>Diaz, Liliana A.</creatorcontrib><creatorcontrib>Franceschini, Esteban A.</creatorcontrib><creatorcontrib>Lacconi, Gabriela I.</creatorcontrib><creatorcontrib>Abuin, Graciela C.</creatorcontrib><title>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements.
Graphic abstract</description><subject>Austenitic stainless steels</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion resistance</subject><subject>Electrochemistry</subject><subject>High resistance</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Raman spectra</subject><subject>Research Article</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8V_OxTdKjrJ-w6kXBW0iT6dqlNjVJD4t_3uxW8CbMMMPMe2-Yh9A5JZeUEHkVKVGEFIRWObmghTpAM1pKVijF1SGaEcLysKLvx-gkxg0hpGJiMUPf_Ab3pvcxhdGmMYDDz-2Tx9Yk021jwtCBTcE7GHxsU177HnMqVjgm0_YdxJg7gA43PuCPrQt-DT3OCcGkNoPbXbgxH2hNh80wdK3db-IpOmpMF-Hst87R293t6_KhWL3cPy6vV4XlpUiFFI3hNXBjiQBTW864sFQwyZvalCUwV1WKulpWlC-oKoV0xkiQ3FmpCBd8ji4m3SH4rxFi0hs_hj6f1IzT_IyocpkjNqFs8DEGaPQQ2k8TtpoSvTNZTybrbLLem6xVJvGJFDO4X0P4k_6H9QPtB4GQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gómez, Melisa J.</creator><creator>Diaz, Liliana A.</creator><creator>Franceschini, Esteban A.</creator><creator>Lacconi, Gabriela I.</creator><creator>Abuin, Graciela C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</title><author>Gómez, Melisa J. ; Diaz, Liliana A. ; Franceschini, Esteban A. ; Lacconi, Gabriela I. ; Abuin, Graciela C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-76fa3be3ac06eabc3236c16273fba55e2d9981db7913418567daa7e73dc780363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion resistance</topic><topic>Electrochemistry</topic><topic>High resistance</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Raman spectra</topic><topic>Research Article</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Melisa J.</creatorcontrib><creatorcontrib>Diaz, Liliana A.</creatorcontrib><creatorcontrib>Franceschini, Esteban A.</creatorcontrib><creatorcontrib>Lacconi, Gabriela I.</creatorcontrib><creatorcontrib>Abuin, Graciela C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Melisa J.</au><au>Diaz, Liliana A.</au><au>Franceschini, Esteban A.</au><au>Lacconi, Gabriela I.</au><au>Abuin, Graciela C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>49</volume><issue>12</issue><spage>1227</spage><epage>1238</epage><pages>1227-1238</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>Nowadays, massive NiMo alloys are considered highly active catalysts for the hydrogen evolution reaction (HER) in industrial alkaline electrolysers. Thus, it is desirable to study other alternative materials, preserving the specific properties of these alloys. In this study, a NiMo coating on 316L stainless steel with high resistance to the corrosive medium is obtained by electrodeposition process. Properties and structural characteristics of the new synthesized material have been correlated with its efficiency as electrocatalyst. In this study, using a simple plating method, it was possible to obtain a material with a catalytic activity for the HER in alkaline media, which is 37.6 times higher than that of conventional raw Ni catalysts, at a considerably lower cost. The 3D nanostructured NiMo catalyst synthesized presented a highly roughened surface with porous microstructure, which is an essential requirement for obtaining high catalytic activity with this type of systems. The porous microstructure in the coating has been confirmed by X ray diffraction and scanning electron microscopy. Raman spectra of the surface evidenced the formation of superficial species before and after the ageing treatment by prolonged chronoamperometry in alkaline electrolyte. This feature was also confirmed by the analysis of X ray photoelectron spectroscopy measurements.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-019-01361-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2019-12, Vol.49 (12), p.1227-1238 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2313166931 |
source | SpringerNature Journals |
subjects | Austenitic stainless steels Catalysts Catalytic activity Chemical synthesis Chemistry Chemistry and Materials Science Corrosion resistance Electrochemistry High resistance Hydrogen evolution reactions Hydrogen production Industrial applications Industrial Chemistry/Chemical Engineering Microstructure Nanostructure Photoelectrons Physical Chemistry Raman spectra Research Article Spectrum analysis Stainless steel |
title | 3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20nanostructured%20NiMo%20catalyst%20electrodeposited%20on%20316L%20stainless%20steel%20for%20hydrogen%20generation%20in%20industrial%20applications&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=G%C3%B3mez,%20Melisa%20J.&rft.date=2019-12-01&rft.volume=49&rft.issue=12&rft.spage=1227&rft.epage=1238&rft.pages=1227-1238&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-019-01361-8&rft_dat=%3Cproquest_cross%3E2313166931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313166931&rft_id=info:pmid/&rfr_iscdi=true |