Bounded solutions to the 1-Laplacian equation with a total variation term
In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely: with homogeneous Dirichlet boundary conditions on ∂ Ω , where Ω is a regular, bounded domain in R N . Here f is a measurable function belonging to some sui...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2019-12, Vol.68 (2), p.597-614 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 2 |
container_start_page | 597 |
container_title | Ricerche di matematica |
container_volume | 68 |
creator | Dall’Aglio, A. Segura de León, S. |
description | In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely:
with homogeneous Dirichlet boundary conditions on
∂
Ω
, where
Ω
is a regular, bounded domain in
R
N
. Here
f
is a measurable function belonging to some suitable Lebesgue space, while
g
(
u
) is a continuous function having the same sign as
u
and such that
g
(
±
∞
)
=
±
∞
. As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum
f
belongs to
L
N
(
Ω
)
. When the absorption term
g
(
u
) is missing, i.e. in the case of Eq. (2), we show that if
f
∈
L
N
(
Ω
)
, and its norm is small, then the only solution of (2) is
u
≡
0
. In the case where the norm of
f
is not small, several cases may happen. Depending on
Ω
and
f
, we show examples where no solution of (2) exists, other examples where
u
≡
0
is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat. |
doi_str_mv | 10.1007/s11587-018-0425-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313072452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313072452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19GbV9MudfAxMOBG1yFNU6dDp5lJUsV_b0oFV64unPudc-AgdE3hlgKou0ipLBUBWhIQTBJ5gha0ZIpwUdFTtADgWQRenqOLGHcAQkkQC7R-8OPQuAZH34-p80PEyeO0dZiSjTn0xnZmwO44mumJv7q0xSYjyfT404RulpML-0t01po-uqvfu0TvT49vqxeyeX1er-43xHJZJZK7FBOSNpUVlbSKG1EqXpi2aWhtDIW6qApnpSpaqB0IB0baui1LYG0-jC_RzZx7CP44upj0zo9hyJWaccphSp8oOlM2-BiDa_UhdHsTvjUFPS2m58V0XkxPi2mZPWz2xMwOHy78Jf9v-gFwu24x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313072452</pqid></control><display><type>article</type><title>Bounded solutions to the 1-Laplacian equation with a total variation term</title><source>SpringerLink Journals</source><creator>Dall’Aglio, A. ; Segura de León, S.</creator><creatorcontrib>Dall’Aglio, A. ; Segura de León, S.</creatorcontrib><description>In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely:
with homogeneous Dirichlet boundary conditions on
∂
Ω
, where
Ω
is a regular, bounded domain in
R
N
. Here
f
is a measurable function belonging to some suitable Lebesgue space, while
g
(
u
) is a continuous function having the same sign as
u
and such that
g
(
±
∞
)
=
±
∞
. As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum
f
belongs to
L
N
(
Ω
)
. When the absorption term
g
(
u
) is missing, i.e. in the case of Eq. (2), we show that if
f
∈
L
N
(
Ω
)
, and its norm is small, then the only solution of (2) is
u
≡
0
. In the case where the norm of
f
is not small, several cases may happen. Depending on
Ω
and
f
, we show examples where no solution of (2) exists, other examples where
u
≡
0
is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-018-0425-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Boundary conditions ; Continuity (mathematics) ; Dirichlet problem ; Geometry ; Laplace equation ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Operators (mathematics) ; Probability Theory and Stochastic Processes</subject><ispartof>Ricerche di matematica, 2019-12, Vol.68 (2), p.597-614</ispartof><rights>Università degli Studi di Napoli "Federico II" 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</citedby><cites>FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-018-0425-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-018-0425-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dall’Aglio, A.</creatorcontrib><creatorcontrib>Segura de León, S.</creatorcontrib><title>Bounded solutions to the 1-Laplacian equation with a total variation term</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely:
with homogeneous Dirichlet boundary conditions on
∂
Ω
, where
Ω
is a regular, bounded domain in
R
N
. Here
f
is a measurable function belonging to some suitable Lebesgue space, while
g
(
u
) is a continuous function having the same sign as
u
and such that
g
(
±
∞
)
=
±
∞
. As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum
f
belongs to
L
N
(
Ω
)
. When the absorption term
g
(
u
) is missing, i.e. in the case of Eq. (2), we show that if
f
∈
L
N
(
Ω
)
, and its norm is small, then the only solution of (2) is
u
≡
0
. In the case where the norm of
f
is not small, several cases may happen. Depending on
Ω
and
f
, we show examples where no solution of (2) exists, other examples where
u
≡
0
is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Continuity (mathematics)</subject><subject>Dirichlet problem</subject><subject>Geometry</subject><subject>Laplace equation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19GbV9MudfAxMOBG1yFNU6dDp5lJUsV_b0oFV64unPudc-AgdE3hlgKou0ipLBUBWhIQTBJ5gha0ZIpwUdFTtADgWQRenqOLGHcAQkkQC7R-8OPQuAZH34-p80PEyeO0dZiSjTn0xnZmwO44mumJv7q0xSYjyfT404RulpML-0t01po-uqvfu0TvT49vqxeyeX1er-43xHJZJZK7FBOSNpUVlbSKG1EqXpi2aWhtDIW6qApnpSpaqB0IB0baui1LYG0-jC_RzZx7CP44upj0zo9hyJWaccphSp8oOlM2-BiDa_UhdHsTvjUFPS2m58V0XkxPi2mZPWz2xMwOHy78Jf9v-gFwu24x</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Dall’Aglio, A.</creator><creator>Segura de León, S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Bounded solutions to the 1-Laplacian equation with a total variation term</title><author>Dall’Aglio, A. ; Segura de León, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Continuity (mathematics)</topic><topic>Dirichlet problem</topic><topic>Geometry</topic><topic>Laplace equation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dall’Aglio, A.</creatorcontrib><creatorcontrib>Segura de León, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dall’Aglio, A.</au><au>Segura de León, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded solutions to the 1-Laplacian equation with a total variation term</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>68</volume><issue>2</issue><spage>597</spage><epage>614</epage><pages>597-614</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely:
with homogeneous Dirichlet boundary conditions on
∂
Ω
, where
Ω
is a regular, bounded domain in
R
N
. Here
f
is a measurable function belonging to some suitable Lebesgue space, while
g
(
u
) is a continuous function having the same sign as
u
and such that
g
(
±
∞
)
=
±
∞
. As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum
f
belongs to
L
N
(
Ω
)
. When the absorption term
g
(
u
) is missing, i.e. in the case of Eq. (2), we show that if
f
∈
L
N
(
Ω
)
, and its norm is small, then the only solution of (2) is
u
≡
0
. In the case where the norm of
f
is not small, several cases may happen. Depending on
Ω
and
f
, we show examples where no solution of (2) exists, other examples where
u
≡
0
is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-018-0425-5</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2019-12, Vol.68 (2), p.597-614 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_proquest_journals_2313072452 |
source | SpringerLink Journals |
subjects | Algebra Analysis Boundary conditions Continuity (mathematics) Dirichlet problem Geometry Laplace equation Mathematics Mathematics and Statistics Numerical Analysis Operators (mathematics) Probability Theory and Stochastic Processes |
title | Bounded solutions to the 1-Laplacian equation with a total variation term |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20solutions%20to%20the%201-Laplacian%20equation%20with%20a%20total%20variation%20term&rft.jtitle=Ricerche%20di%20matematica&rft.au=Dall%E2%80%99Aglio,%20A.&rft.date=2019-12-01&rft.volume=68&rft.issue=2&rft.spage=597&rft.epage=614&rft.pages=597-614&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-018-0425-5&rft_dat=%3Cproquest_cross%3E2313072452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313072452&rft_id=info:pmid/&rfr_iscdi=true |