Bounded solutions to the 1-Laplacian equation with a total variation term

In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely: with homogeneous Dirichlet boundary conditions on ∂ Ω , where Ω is a regular, bounded domain in R N . Here f is a measurable function belonging to some sui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2019-12, Vol.68 (2), p.597-614
Hauptverfasser: Dall’Aglio, A., Segura de León, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 2
container_start_page 597
container_title Ricerche di matematica
container_volume 68
creator Dall’Aglio, A.
Segura de León, S.
description In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely: with homogeneous Dirichlet boundary conditions on ∂ Ω , where Ω is a regular, bounded domain in R N . Here f is a measurable function belonging to some suitable Lebesgue space, while g ( u ) is a continuous function having the same sign as u and such that g ( ± ∞ ) = ± ∞ . As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum f belongs to L N ( Ω ) . When the absorption term g ( u ) is missing, i.e. in the case of Eq. (2), we show that if f ∈ L N ( Ω ) , and its norm is small, then the only solution of (2) is u ≡ 0 . In the case where the norm of f is not small, several cases may happen. Depending on Ω and f , we show examples where no solution of (2) exists, other examples where u ≡ 0 is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.
doi_str_mv 10.1007/s11587-018-0425-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313072452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313072452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19GbV9MudfAxMOBG1yFNU6dDp5lJUsV_b0oFV64unPudc-AgdE3hlgKou0ipLBUBWhIQTBJ5gha0ZIpwUdFTtADgWQRenqOLGHcAQkkQC7R-8OPQuAZH34-p80PEyeO0dZiSjTn0xnZmwO44mumJv7q0xSYjyfT404RulpML-0t01po-uqvfu0TvT49vqxeyeX1er-43xHJZJZK7FBOSNpUVlbSKG1EqXpi2aWhtDIW6qApnpSpaqB0IB0baui1LYG0-jC_RzZx7CP44upj0zo9hyJWaccphSp8oOlM2-BiDa_UhdHsTvjUFPS2m58V0XkxPi2mZPWz2xMwOHy78Jf9v-gFwu24x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313072452</pqid></control><display><type>article</type><title>Bounded solutions to the 1-Laplacian equation with a total variation term</title><source>SpringerLink Journals</source><creator>Dall’Aglio, A. ; Segura de León, S.</creator><creatorcontrib>Dall’Aglio, A. ; Segura de León, S.</creatorcontrib><description>In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely: with homogeneous Dirichlet boundary conditions on ∂ Ω , where Ω is a regular, bounded domain in R N . Here f is a measurable function belonging to some suitable Lebesgue space, while g ( u ) is a continuous function having the same sign as u and such that g ( ± ∞ ) = ± ∞ . As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum f belongs to L N ( Ω ) . When the absorption term g ( u ) is missing, i.e. in the case of Eq. (2), we show that if f ∈ L N ( Ω ) , and its norm is small, then the only solution of (2) is u ≡ 0 . In the case where the norm of f is not small, several cases may happen. Depending on Ω and f , we show examples where no solution of (2) exists, other examples where u ≡ 0 is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-018-0425-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Boundary conditions ; Continuity (mathematics) ; Dirichlet problem ; Geometry ; Laplace equation ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Operators (mathematics) ; Probability Theory and Stochastic Processes</subject><ispartof>Ricerche di matematica, 2019-12, Vol.68 (2), p.597-614</ispartof><rights>Università degli Studi di Napoli "Federico II" 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</citedby><cites>FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-018-0425-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-018-0425-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dall’Aglio, A.</creatorcontrib><creatorcontrib>Segura de León, S.</creatorcontrib><title>Bounded solutions to the 1-Laplacian equation with a total variation term</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely: with homogeneous Dirichlet boundary conditions on ∂ Ω , where Ω is a regular, bounded domain in R N . Here f is a measurable function belonging to some suitable Lebesgue space, while g ( u ) is a continuous function having the same sign as u and such that g ( ± ∞ ) = ± ∞ . As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum f belongs to L N ( Ω ) . When the absorption term g ( u ) is missing, i.e. in the case of Eq. (2), we show that if f ∈ L N ( Ω ) , and its norm is small, then the only solution of (2) is u ≡ 0 . In the case where the norm of f is not small, several cases may happen. Depending on Ω and f , we show examples where no solution of (2) exists, other examples where u ≡ 0 is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Continuity (mathematics)</subject><subject>Dirichlet problem</subject><subject>Geometry</subject><subject>Laplace equation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19GbV9MudfAxMOBG1yFNU6dDp5lJUsV_b0oFV64unPudc-AgdE3hlgKou0ipLBUBWhIQTBJ5gha0ZIpwUdFTtADgWQRenqOLGHcAQkkQC7R-8OPQuAZH34-p80PEyeO0dZiSjTn0xnZmwO44mumJv7q0xSYjyfT404RulpML-0t01po-uqvfu0TvT49vqxeyeX1er-43xHJZJZK7FBOSNpUVlbSKG1EqXpi2aWhtDIW6qApnpSpaqB0IB0baui1LYG0-jC_RzZx7CP44upj0zo9hyJWaccphSp8oOlM2-BiDa_UhdHsTvjUFPS2m58V0XkxPi2mZPWz2xMwOHy78Jf9v-gFwu24x</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Dall’Aglio, A.</creator><creator>Segura de León, S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Bounded solutions to the 1-Laplacian equation with a total variation term</title><author>Dall’Aglio, A. ; Segura de León, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ded72451d9c495c73a48736afdd1baa10b696ec576f0be04e0a5cbf8802fbf823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Continuity (mathematics)</topic><topic>Dirichlet problem</topic><topic>Geometry</topic><topic>Laplace equation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dall’Aglio, A.</creatorcontrib><creatorcontrib>Segura de León, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dall’Aglio, A.</au><au>Segura de León, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded solutions to the 1-Laplacian equation with a total variation term</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>68</volume><issue>2</issue><spage>597</spage><epage>614</epage><pages>597-614</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>In this paper we study the Dirichlet problem for two related equations involving the 1-Laplacian and a total variation term as reaction, namely: with homogeneous Dirichlet boundary conditions on ∂ Ω , where Ω is a regular, bounded domain in R N . Here f is a measurable function belonging to some suitable Lebesgue space, while g ( u ) is a continuous function having the same sign as u and such that g ( ± ∞ ) = ± ∞ . As far as Eq. (1) is concerned, we show that a bounded solution exists if the datum f belongs to L N ( Ω ) . When the absorption term g ( u ) is missing, i.e. in the case of Eq. (2), we show that if f ∈ L N ( Ω ) , and its norm is small, then the only solution of (2) is u ≡ 0 . In the case where the norm of f is not small, several cases may happen. Depending on Ω and f , we show examples where no solution of (2) exists, other examples where u ≡ 0 is still a solution, and finally examples with nontrivial solutions. Some of these results can be viewed as a translation to the 1-Laplacian operator of known results by Ferone and Murat.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-018-0425-5</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2019-12, Vol.68 (2), p.597-614
issn 0035-5038
1827-3491
language eng
recordid cdi_proquest_journals_2313072452
source SpringerLink Journals
subjects Algebra
Analysis
Boundary conditions
Continuity (mathematics)
Dirichlet problem
Geometry
Laplace equation
Mathematics
Mathematics and Statistics
Numerical Analysis
Operators (mathematics)
Probability Theory and Stochastic Processes
title Bounded solutions to the 1-Laplacian equation with a total variation term
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20solutions%20to%20the%201-Laplacian%20equation%20with%20a%20total%20variation%20term&rft.jtitle=Ricerche%20di%20matematica&rft.au=Dall%E2%80%99Aglio,%20A.&rft.date=2019-12-01&rft.volume=68&rft.issue=2&rft.spage=597&rft.epage=614&rft.pages=597-614&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-018-0425-5&rft_dat=%3Cproquest_cross%3E2313072452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313072452&rft_id=info:pmid/&rfr_iscdi=true