Postcombustion Evolution of Soot Properties in an Aircraft Engine

Recent measurements have suggested that soot properties can evolve downstream of the combustor, changing the characteristics of aviation particulate matter emissions and possibly altering the subsequent atmospheric impacts. This paper addresses the potential for the postcombustion thermodynamic envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2007-09, Vol.23 (5), p.942-948
Hauptverfasser: Dakhel, Pierre M, Lukachko, Stephen P, Waitz, Ian A, Miake-Lye, Richard C, Brown, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 5
container_start_page 942
container_title Journal of propulsion and power
container_volume 23
creator Dakhel, Pierre M
Lukachko, Stephen P
Waitz, Ian A
Miake-Lye, Richard C
Brown, Robert C
description Recent measurements have suggested that soot properties can evolve downstream of the combustor, changing the characteristics of aviation particulate matter emissions and possibly altering the subsequent atmospheric impacts. This paper addresses the potential for the postcombustion thermodynamic environment to influence aircraft nonvolatile particulate matter emissions. Microphysical processes and interactions with gas phase species have been modeled for temperatures and pressures representative of in-service engines. Time-scale arguments are used to evaluate the relative contributions that various phenomena may make to the evolution of soot, including coagulation growth, ion-soot attachment, and vapor condensation. Then a higher-fidelity microphysics kinetic is employed to estimate the extent to which soot properties evolve as a result of these processes. Results suggest that limited opportunities exist for the modification of the size distribution of the soot, its charge distribution, or its volatile content, leading to the conclusion that the characteristics of the turbine and nozzle of an aircraft engine have little or no influence on aircraft nonvolatile emissions. Combustor processing determines the properties of soot particulate matter emissions from aircraft engines, setting the stage for interactions with gaseous emissions and development as cloud condensation nuclei in the exhaust plume.
doi_str_mv 10.2514/1.26738
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2312964308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312964308</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-fa4ddf2a374ee23fc691631a76de83f8ddf91417c4dbe267d2e7c50b6ecc4b8e3</originalsourceid><addsrcrecordid>eNptkF1LwzAYhYMoOKf4FwqK4kVnvppml2PMDxg4UK9Dmr6RjK6ZSSr6762rIKhX74HzcHjPQeiU4AktCL8mEypKJvfQiBSM5UyWYh-NcMllzkUhD9FRjGuMiZCiHKHZysdk_KbqYnK-zRZvvul2ytvs0fuUrYLfQkgOYubaTLfZzAUTtE3Zon1xLRyjA6ubCCffd4yebxZP87t8-XB7P58tc80kTrnVvK4t1azkAJRZI6ZEMKJLUYNkVvbmlHBSGl5X0DeoKZSmwJUAY3glgY3RxZC7Df61g5jUxkUDTaNb8F1UDBPKWd95jM5-gWvfhbb_TVFG6FRwhmVPXQ6UCT7GAFZtg9vo8KEIVl9DKqJ2Q_bk-UBqp_VP1l_s6l9ssNW2tsp2TZPgPbFPK1N-wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312964308</pqid></control><display><type>article</type><title>Postcombustion Evolution of Soot Properties in an Aircraft Engine</title><source>Alma/SFX Local Collection</source><creator>Dakhel, Pierre M ; Lukachko, Stephen P ; Waitz, Ian A ; Miake-Lye, Richard C ; Brown, Robert C</creator><creatorcontrib>Dakhel, Pierre M ; Lukachko, Stephen P ; Waitz, Ian A ; Miake-Lye, Richard C ; Brown, Robert C</creatorcontrib><description>Recent measurements have suggested that soot properties can evolve downstream of the combustor, changing the characteristics of aviation particulate matter emissions and possibly altering the subsequent atmospheric impacts. This paper addresses the potential for the postcombustion thermodynamic environment to influence aircraft nonvolatile particulate matter emissions. Microphysical processes and interactions with gas phase species have been modeled for temperatures and pressures representative of in-service engines. Time-scale arguments are used to evaluate the relative contributions that various phenomena may make to the evolution of soot, including coagulation growth, ion-soot attachment, and vapor condensation. Then a higher-fidelity microphysics kinetic is employed to estimate the extent to which soot properties evolve as a result of these processes. Results suggest that limited opportunities exist for the modification of the size distribution of the soot, its charge distribution, or its volatile content, leading to the conclusion that the characteristics of the turbine and nozzle of an aircraft engine have little or no influence on aircraft nonvolatile emissions. Combustor processing determines the properties of soot particulate matter emissions from aircraft engines, setting the stage for interactions with gaseous emissions and development as cloud condensation nuclei in the exhaust plume.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.26738</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft engines ; Soot</subject><ispartof>Journal of propulsion and power, 2007-09, Vol.23 (5), p.942-948</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Sep/Oct 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-fa4ddf2a374ee23fc691631a76de83f8ddf91417c4dbe267d2e7c50b6ecc4b8e3</citedby><cites>FETCH-LOGICAL-a380t-fa4ddf2a374ee23fc691631a76de83f8ddf91417c4dbe267d2e7c50b6ecc4b8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dakhel, Pierre M</creatorcontrib><creatorcontrib>Lukachko, Stephen P</creatorcontrib><creatorcontrib>Waitz, Ian A</creatorcontrib><creatorcontrib>Miake-Lye, Richard C</creatorcontrib><creatorcontrib>Brown, Robert C</creatorcontrib><title>Postcombustion Evolution of Soot Properties in an Aircraft Engine</title><title>Journal of propulsion and power</title><description>Recent measurements have suggested that soot properties can evolve downstream of the combustor, changing the characteristics of aviation particulate matter emissions and possibly altering the subsequent atmospheric impacts. This paper addresses the potential for the postcombustion thermodynamic environment to influence aircraft nonvolatile particulate matter emissions. Microphysical processes and interactions with gas phase species have been modeled for temperatures and pressures representative of in-service engines. Time-scale arguments are used to evaluate the relative contributions that various phenomena may make to the evolution of soot, including coagulation growth, ion-soot attachment, and vapor condensation. Then a higher-fidelity microphysics kinetic is employed to estimate the extent to which soot properties evolve as a result of these processes. Results suggest that limited opportunities exist for the modification of the size distribution of the soot, its charge distribution, or its volatile content, leading to the conclusion that the characteristics of the turbine and nozzle of an aircraft engine have little or no influence on aircraft nonvolatile emissions. Combustor processing determines the properties of soot particulate matter emissions from aircraft engines, setting the stage for interactions with gaseous emissions and development as cloud condensation nuclei in the exhaust plume.</description><subject>Aircraft engines</subject><subject>Soot</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAYhYMoOKf4FwqK4kVnvppml2PMDxg4UK9Dmr6RjK6ZSSr6762rIKhX74HzcHjPQeiU4AktCL8mEypKJvfQiBSM5UyWYh-NcMllzkUhD9FRjGuMiZCiHKHZysdk_KbqYnK-zRZvvul2ytvs0fuUrYLfQkgOYubaTLfZzAUTtE3Zon1xLRyjA6ubCCffd4yebxZP87t8-XB7P58tc80kTrnVvK4t1azkAJRZI6ZEMKJLUYNkVvbmlHBSGl5X0DeoKZSmwJUAY3glgY3RxZC7Df61g5jUxkUDTaNb8F1UDBPKWd95jM5-gWvfhbb_TVFG6FRwhmVPXQ6UCT7GAFZtg9vo8KEIVl9DKqJ2Q_bk-UBqp_VP1l_s6l9ssNW2tsp2TZPgPbFPK1N-wQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Dakhel, Pierre M</creator><creator>Lukachko, Stephen P</creator><creator>Waitz, Ian A</creator><creator>Miake-Lye, Richard C</creator><creator>Brown, Robert C</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070901</creationdate><title>Postcombustion Evolution of Soot Properties in an Aircraft Engine</title><author>Dakhel, Pierre M ; Lukachko, Stephen P ; Waitz, Ian A ; Miake-Lye, Richard C ; Brown, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-fa4ddf2a374ee23fc691631a76de83f8ddf91417c4dbe267d2e7c50b6ecc4b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aircraft engines</topic><topic>Soot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dakhel, Pierre M</creatorcontrib><creatorcontrib>Lukachko, Stephen P</creatorcontrib><creatorcontrib>Waitz, Ian A</creatorcontrib><creatorcontrib>Miake-Lye, Richard C</creatorcontrib><creatorcontrib>Brown, Robert C</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dakhel, Pierre M</au><au>Lukachko, Stephen P</au><au>Waitz, Ian A</au><au>Miake-Lye, Richard C</au><au>Brown, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postcombustion Evolution of Soot Properties in an Aircraft Engine</atitle><jtitle>Journal of propulsion and power</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>23</volume><issue>5</issue><spage>942</spage><epage>948</epage><pages>942-948</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>Recent measurements have suggested that soot properties can evolve downstream of the combustor, changing the characteristics of aviation particulate matter emissions and possibly altering the subsequent atmospheric impacts. This paper addresses the potential for the postcombustion thermodynamic environment to influence aircraft nonvolatile particulate matter emissions. Microphysical processes and interactions with gas phase species have been modeled for temperatures and pressures representative of in-service engines. Time-scale arguments are used to evaluate the relative contributions that various phenomena may make to the evolution of soot, including coagulation growth, ion-soot attachment, and vapor condensation. Then a higher-fidelity microphysics kinetic is employed to estimate the extent to which soot properties evolve as a result of these processes. Results suggest that limited opportunities exist for the modification of the size distribution of the soot, its charge distribution, or its volatile content, leading to the conclusion that the characteristics of the turbine and nozzle of an aircraft engine have little or no influence on aircraft nonvolatile emissions. Combustor processing determines the properties of soot particulate matter emissions from aircraft engines, setting the stage for interactions with gaseous emissions and development as cloud condensation nuclei in the exhaust plume.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.26738</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2007-09, Vol.23 (5), p.942-948
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_2312964308
source Alma/SFX Local Collection
subjects Aircraft engines
Soot
title Postcombustion Evolution of Soot Properties in an Aircraft Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postcombustion%20Evolution%20of%20Soot%20Properties%20in%20an%20Aircraft%20Engine&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Dakhel,%20Pierre%20M&rft.date=2007-09-01&rft.volume=23&rft.issue=5&rft.spage=942&rft.epage=948&rft.pages=942-948&rft.issn=0748-4658&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.26738&rft_dat=%3Cproquest_aiaa_%3E2312964308%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312964308&rft_id=info:pmid/&rfr_iscdi=true