Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection
We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Bo...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2017-06, Vol.19 (6), p.65006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 65006 |
container_title | New journal of physics |
container_volume | 19 |
creator | Pratt, J Busse, A Müller, W-C Watkins, N W Chapman, S C |
description | We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow. |
doi_str_mv | 10.1088/1367-2630/aa6fe8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_proquest_journals_2312604997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3fac064c9aec4ad180d33b679b377522</doaj_id><sourcerecordid>2312604997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEqVw54YlDlxIO7YT2zlCKbTSIi5wtmYde5tV1k5tp2pv_HQcQksPcLI9-t4bz7yqek3hhIJSp5QLWTPB4RRROKueVEcPpaeP7s-rFyntAShVjB1VP89vc7QHW9_gOFuSMuYh5cEk4mI4kA3uIvrdgJ6Y4G_sLbmax5Ggx_EuDQUKkVyFQ9hZb8OcSJ7jdh6tz-RjeabB23S9Kk0egi_Cnny9-PSo9LJ65nBM9tWf87j68fn8-9lFvfn25fLsw6Y2jWS5Zso4aHvLOeUUDZfbVqLAMrkyyNGJljlnREFUw6FXLaWCtcBB9bZjVvHj6nL17QPu9RSHA8Y7HXDQvwsh7jTGMvhoNXdoQDSmQ2sa7KmCnvOtkN2WS9kyVrzerF4mLsvy2oeImgJwqSlndOn2diWmGK5nm7LehzmWrSXNOGUCmq6ThYJ7n5BStO7hXxT0kqpeYtNLbHpNtUjerZIhTH89_X7StNNCg2gBhJ56V8j3_yD_a_wLfBuxNA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312604997</pqid></control><display><type>article</type><title>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</title><source>IOP Publishing Free Content</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pratt, J ; Busse, A ; Müller, W-C ; Watkins, N W ; Chapman, S C</creator><creatorcontrib>Pratt, J ; Busse, A ; Müller, W-C ; Watkins, N W ; Chapman, S C</creatorcontrib><description>We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aa6fe8</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>47.27.tb ; Anisotropy ; Apexes ; Asymptotic properties ; Boussinesq equations ; Computational fluid dynamics ; Computer simulation ; Convection ; Convexity ; Extreme value theory ; Extreme values ; Fluid flow ; Fysikk: 430 ; Game theory ; Hulls ; Lagrangian statistics ; magnetoconvection ; Magnetohydrodynamic turbulence ; magnetohydrodynamics ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Physics ; Physics: 430 ; Statistics ; Surface geometry ; Tracer particles ; Tracers ; Transport properties ; turbulence ; turbulent transport ; VDP</subject><ispartof>New journal of physics, 2017-06, Vol.19 (6), p.65006</ispartof><rights>2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</citedby><cites>FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</cites><orcidid>0000-0003-2707-3616 ; 0000-0003-4484-6588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aa6fe8/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,26567,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Pratt, J</creatorcontrib><creatorcontrib>Busse, A</creatorcontrib><creatorcontrib>Müller, W-C</creatorcontrib><creatorcontrib>Watkins, N W</creatorcontrib><creatorcontrib>Chapman, S C</creatorcontrib><title>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.</description><subject>47.27.tb</subject><subject>Anisotropy</subject><subject>Apexes</subject><subject>Asymptotic properties</subject><subject>Boussinesq equations</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Convexity</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Fluid flow</subject><subject>Fysikk: 430</subject><subject>Game theory</subject><subject>Hulls</subject><subject>Lagrangian statistics</subject><subject>magnetoconvection</subject><subject>Magnetohydrodynamic turbulence</subject><subject>magnetohydrodynamics</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Physics</subject><subject>Physics: 430</subject><subject>Statistics</subject><subject>Surface geometry</subject><subject>Tracer particles</subject><subject>Tracers</subject><subject>Transport properties</subject><subject>turbulence</subject><subject>turbulent transport</subject><subject>VDP</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFv1DAQhSMEEqVw54YlDlxIO7YT2zlCKbTSIi5wtmYde5tV1k5tp2pv_HQcQksPcLI9-t4bz7yqek3hhIJSp5QLWTPB4RRROKueVEcPpaeP7s-rFyntAShVjB1VP89vc7QHW9_gOFuSMuYh5cEk4mI4kA3uIvrdgJ6Y4G_sLbmax5Ggx_EuDQUKkVyFQ9hZb8OcSJ7jdh6tz-RjeabB23S9Kk0egi_Cnny9-PSo9LJ65nBM9tWf87j68fn8-9lFvfn25fLsw6Y2jWS5Zso4aHvLOeUUDZfbVqLAMrkyyNGJljlnREFUw6FXLaWCtcBB9bZjVvHj6nL17QPu9RSHA8Y7HXDQvwsh7jTGMvhoNXdoQDSmQ2sa7KmCnvOtkN2WS9kyVrzerF4mLsvy2oeImgJwqSlndOn2diWmGK5nm7LehzmWrSXNOGUCmq6ThYJ7n5BStO7hXxT0kqpeYtNLbHpNtUjerZIhTH89_X7StNNCg2gBhJ56V8j3_yD_a_wLfBuxNA</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>Pratt, J</creator><creator>Busse, A</creator><creator>Müller, W-C</creator><creator>Watkins, N W</creator><creator>Chapman, S C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2707-3616</orcidid><orcidid>https://orcid.org/0000-0003-4484-6588</orcidid></search><sort><creationdate>20170620</creationdate><title>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</title><author>Pratt, J ; Busse, A ; Müller, W-C ; Watkins, N W ; Chapman, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>47.27.tb</topic><topic>Anisotropy</topic><topic>Apexes</topic><topic>Asymptotic properties</topic><topic>Boussinesq equations</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Convexity</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Fluid flow</topic><topic>Fysikk: 430</topic><topic>Game theory</topic><topic>Hulls</topic><topic>Lagrangian statistics</topic><topic>magnetoconvection</topic><topic>Magnetohydrodynamic turbulence</topic><topic>magnetohydrodynamics</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Physics</topic><topic>Physics: 430</topic><topic>Statistics</topic><topic>Surface geometry</topic><topic>Tracer particles</topic><topic>Tracers</topic><topic>Transport properties</topic><topic>turbulence</topic><topic>turbulent transport</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratt, J</creatorcontrib><creatorcontrib>Busse, A</creatorcontrib><creatorcontrib>Müller, W-C</creatorcontrib><creatorcontrib>Watkins, N W</creatorcontrib><creatorcontrib>Chapman, S C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratt, J</au><au>Busse, A</au><au>Müller, W-C</au><au>Watkins, N W</au><au>Chapman, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2017-06-20</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>65006</spage><pages>65006-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aa6fe8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2707-3616</orcidid><orcidid>https://orcid.org/0000-0003-4484-6588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2017-06, Vol.19 (6), p.65006 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2312604997 |
source | IOP Publishing Free Content; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 47.27.tb Anisotropy Apexes Asymptotic properties Boussinesq equations Computational fluid dynamics Computer simulation Convection Convexity Extreme value theory Extreme values Fluid flow Fysikk: 430 Game theory Hulls Lagrangian statistics magnetoconvection Magnetohydrodynamic turbulence magnetohydrodynamics Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Physics Physics: 430 Statistics Surface geometry Tracer particles Tracers Transport properties turbulence turbulent transport VDP |
title | Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme-value%20statistics%20from%20Lagrangian%20convex%20hull%20analysis%20for%20homogeneous%20turbulent%20Boussinesq%20convection%20and%20MHD%20convection&rft.jtitle=New%20journal%20of%20physics&rft.au=Pratt,%20J&rft.date=2017-06-20&rft.volume=19&rft.issue=6&rft.spage=65006&rft.pages=65006-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aa6fe8&rft_dat=%3Cproquest_crist%3E2312604997%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312604997&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3fac064c9aec4ad180d33b679b377522&rfr_iscdi=true |