Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection

We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2017-06, Vol.19 (6), p.65006
Hauptverfasser: Pratt, J, Busse, A, Müller, W-C, Watkins, N W, Chapman, S C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65006
container_title New journal of physics
container_volume 19
creator Pratt, J
Busse, A
Müller, W-C
Watkins, N W
Chapman, S C
description We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.
doi_str_mv 10.1088/1367-2630/aa6fe8
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_proquest_journals_2312604997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3fac064c9aec4ad180d33b679b377522</doaj_id><sourcerecordid>2312604997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEqVw54YlDlxIO7YT2zlCKbTSIi5wtmYde5tV1k5tp2pv_HQcQksPcLI9-t4bz7yqek3hhIJSp5QLWTPB4RRROKueVEcPpaeP7s-rFyntAShVjB1VP89vc7QHW9_gOFuSMuYh5cEk4mI4kA3uIvrdgJ6Y4G_sLbmax5Ggx_EuDQUKkVyFQ9hZb8OcSJ7jdh6tz-RjeabB23S9Kk0egi_Cnny9-PSo9LJ65nBM9tWf87j68fn8-9lFvfn25fLsw6Y2jWS5Zso4aHvLOeUUDZfbVqLAMrkyyNGJljlnREFUw6FXLaWCtcBB9bZjVvHj6nL17QPu9RSHA8Y7HXDQvwsh7jTGMvhoNXdoQDSmQ2sa7KmCnvOtkN2WS9kyVrzerF4mLsvy2oeImgJwqSlndOn2diWmGK5nm7LehzmWrSXNOGUCmq6ThYJ7n5BStO7hXxT0kqpeYtNLbHpNtUjerZIhTH89_X7StNNCg2gBhJ56V8j3_yD_a_wLfBuxNA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312604997</pqid></control><display><type>article</type><title>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</title><source>IOP Publishing Free Content</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pratt, J ; Busse, A ; Müller, W-C ; Watkins, N W ; Chapman, S C</creator><creatorcontrib>Pratt, J ; Busse, A ; Müller, W-C ; Watkins, N W ; Chapman, S C</creatorcontrib><description>We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aa6fe8</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>47.27.tb ; Anisotropy ; Apexes ; Asymptotic properties ; Boussinesq equations ; Computational fluid dynamics ; Computer simulation ; Convection ; Convexity ; Extreme value theory ; Extreme values ; Fluid flow ; Fysikk: 430 ; Game theory ; Hulls ; Lagrangian statistics ; magnetoconvection ; Magnetohydrodynamic turbulence ; magnetohydrodynamics ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Physics ; Physics: 430 ; Statistics ; Surface geometry ; Tracer particles ; Tracers ; Transport properties ; turbulence ; turbulent transport ; VDP</subject><ispartof>New journal of physics, 2017-06, Vol.19 (6), p.65006</ispartof><rights>2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</citedby><cites>FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</cites><orcidid>0000-0003-2707-3616 ; 0000-0003-4484-6588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aa6fe8/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,26567,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Pratt, J</creatorcontrib><creatorcontrib>Busse, A</creatorcontrib><creatorcontrib>Müller, W-C</creatorcontrib><creatorcontrib>Watkins, N W</creatorcontrib><creatorcontrib>Chapman, S C</creatorcontrib><title>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.</description><subject>47.27.tb</subject><subject>Anisotropy</subject><subject>Apexes</subject><subject>Asymptotic properties</subject><subject>Boussinesq equations</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Convexity</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Fluid flow</subject><subject>Fysikk: 430</subject><subject>Game theory</subject><subject>Hulls</subject><subject>Lagrangian statistics</subject><subject>magnetoconvection</subject><subject>Magnetohydrodynamic turbulence</subject><subject>magnetohydrodynamics</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Physics</subject><subject>Physics: 430</subject><subject>Statistics</subject><subject>Surface geometry</subject><subject>Tracer particles</subject><subject>Tracers</subject><subject>Transport properties</subject><subject>turbulence</subject><subject>turbulent transport</subject><subject>VDP</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFv1DAQhSMEEqVw54YlDlxIO7YT2zlCKbTSIi5wtmYde5tV1k5tp2pv_HQcQksPcLI9-t4bz7yqek3hhIJSp5QLWTPB4RRROKueVEcPpaeP7s-rFyntAShVjB1VP89vc7QHW9_gOFuSMuYh5cEk4mI4kA3uIvrdgJ6Y4G_sLbmax5Ggx_EuDQUKkVyFQ9hZb8OcSJ7jdh6tz-RjeabB23S9Kk0egi_Cnny9-PSo9LJ65nBM9tWf87j68fn8-9lFvfn25fLsw6Y2jWS5Zso4aHvLOeUUDZfbVqLAMrkyyNGJljlnREFUw6FXLaWCtcBB9bZjVvHj6nL17QPu9RSHA8Y7HXDQvwsh7jTGMvhoNXdoQDSmQ2sa7KmCnvOtkN2WS9kyVrzerF4mLsvy2oeImgJwqSlndOn2diWmGK5nm7LehzmWrSXNOGUCmq6ThYJ7n5BStO7hXxT0kqpeYtNLbHpNtUjerZIhTH89_X7StNNCg2gBhJ56V8j3_yD_a_wLfBuxNA</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>Pratt, J</creator><creator>Busse, A</creator><creator>Müller, W-C</creator><creator>Watkins, N W</creator><creator>Chapman, S C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2707-3616</orcidid><orcidid>https://orcid.org/0000-0003-4484-6588</orcidid></search><sort><creationdate>20170620</creationdate><title>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</title><author>Pratt, J ; Busse, A ; Müller, W-C ; Watkins, N W ; Chapman, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-28cf05de33131ac37b57a6a0888ca3af652ffc605d8430d85116250308de92e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>47.27.tb</topic><topic>Anisotropy</topic><topic>Apexes</topic><topic>Asymptotic properties</topic><topic>Boussinesq equations</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Convexity</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Fluid flow</topic><topic>Fysikk: 430</topic><topic>Game theory</topic><topic>Hulls</topic><topic>Lagrangian statistics</topic><topic>magnetoconvection</topic><topic>Magnetohydrodynamic turbulence</topic><topic>magnetohydrodynamics</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Physics</topic><topic>Physics: 430</topic><topic>Statistics</topic><topic>Surface geometry</topic><topic>Tracer particles</topic><topic>Tracers</topic><topic>Transport properties</topic><topic>turbulence</topic><topic>turbulent transport</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratt, J</creatorcontrib><creatorcontrib>Busse, A</creatorcontrib><creatorcontrib>Müller, W-C</creatorcontrib><creatorcontrib>Watkins, N W</creatorcontrib><creatorcontrib>Chapman, S C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratt, J</au><au>Busse, A</au><au>Müller, W-C</au><au>Watkins, N W</au><au>Chapman, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2017-06-20</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>65006</spage><pages>65006-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aa6fe8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2707-3616</orcidid><orcidid>https://orcid.org/0000-0003-4484-6588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2017-06, Vol.19 (6), p.65006
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2312604997
source IOP Publishing Free Content; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 47.27.tb
Anisotropy
Apexes
Asymptotic properties
Boussinesq equations
Computational fluid dynamics
Computer simulation
Convection
Convexity
Extreme value theory
Extreme values
Fluid flow
Fysikk: 430
Game theory
Hulls
Lagrangian statistics
magnetoconvection
Magnetohydrodynamic turbulence
magnetohydrodynamics
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Physics
Physics: 430
Statistics
Surface geometry
Tracer particles
Tracers
Transport properties
turbulence
turbulent transport
VDP
title Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme-value%20statistics%20from%20Lagrangian%20convex%20hull%20analysis%20for%20homogeneous%20turbulent%20Boussinesq%20convection%20and%20MHD%20convection&rft.jtitle=New%20journal%20of%20physics&rft.au=Pratt,%20J&rft.date=2017-06-20&rft.volume=19&rft.issue=6&rft.spage=65006&rft.pages=65006-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aa6fe8&rft_dat=%3Cproquest_crist%3E2312604997%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312604997&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3fac064c9aec4ad180d33b679b377522&rfr_iscdi=true