Fuzzy control of bipedal running with variable speed and apex height
In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2019-12, Vol.7 (4), p.1379-1391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1391 |
---|---|
container_issue | 4 |
container_start_page | 1379 |
container_title | International journal of dynamics and control |
container_volume | 7 |
creator | Hazrati, Behzad Dadashzadeh, Behnam Shoaran, Maryam |
description | In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity. |
doi_str_mv | 10.1007/s40435-019-00518-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312577722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312577722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwFPFcn07RpjrK6Kix4UfAW0na626W2NWn9s5_eaEVvHoYZmPfeDD_GTgWcCwB14SXIOIlA6AggEVmkD9gMhU4iTHV2-DtnT8ds4f0OAFBIQKln7Go17vcfvOjawXUN7yqe1z2VtuFubNu63fC3etjyV-tqmzfEfU9UctuG6umdb6nebIcTdlTZxtPip8_Z4-r6YXkbre9v7paX66jAWOooyWUeSyrjjHSFuQKbpSlQIpQuFeagw84WCaakMS2qMjwI0ioShdRISsVzdjbl9q57GckPZteNrg0nDcYCE6UUYlDhpCpc572jyvSufrbuwwgwX8DMBMwEYOYbmNHBFE8mH8Tthtxf9D-uT60AbNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312577722</pqid></control><display><type>article</type><title>Fuzzy control of bipedal running with variable speed and apex height</title><source>SpringerNature Journals</source><creator>Hazrati, Behzad ; Dadashzadeh, Behnam ; Shoaran, Maryam</creator><creatorcontrib>Hazrati, Behzad ; Dadashzadeh, Behnam ; Shoaran, Maryam</creatorcontrib><description>In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-019-00518-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuators ; Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Controllers ; Dynamical Systems ; Engineering ; Fuzzy control ; Fuzzy logic ; Iterative methods ; Knee ; Robots ; Stability ; State machines ; Torso ; Training ; Velocity ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-12, Vol.7 (4), p.1379-1391</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</citedby><cites>FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</cites><orcidid>0000-0002-9666-4535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-019-00518-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-019-00518-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Hazrati, Behzad</creatorcontrib><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Shoaran, Maryam</creatorcontrib><title>Fuzzy control of bipedal running with variable speed and apex height</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.</description><subject>Actuators</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Iterative methods</subject><subject>Knee</subject><subject>Robots</subject><subject>Stability</subject><subject>State machines</subject><subject>Torso</subject><subject>Training</subject><subject>Velocity</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouKz7BTwFPFcn07RpjrK6Kix4UfAW0na626W2NWn9s5_eaEVvHoYZmPfeDD_GTgWcCwB14SXIOIlA6AggEVmkD9gMhU4iTHV2-DtnT8ds4f0OAFBIQKln7Go17vcfvOjawXUN7yqe1z2VtuFubNu63fC3etjyV-tqmzfEfU9UctuG6umdb6nebIcTdlTZxtPip8_Z4-r6YXkbre9v7paX66jAWOooyWUeSyrjjHSFuQKbpSlQIpQuFeagw84WCaakMS2qMjwI0ioShdRISsVzdjbl9q57GckPZteNrg0nDcYCE6UUYlDhpCpc572jyvSufrbuwwgwX8DMBMwEYOYbmNHBFE8mH8Tthtxf9D-uT60AbNQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hazrati, Behzad</creator><creator>Dadashzadeh, Behnam</creator><creator>Shoaran, Maryam</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9666-4535</orcidid></search><sort><creationdate>20191201</creationdate><title>Fuzzy control of bipedal running with variable speed and apex height</title><author>Hazrati, Behzad ; Dadashzadeh, Behnam ; Shoaran, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Iterative methods</topic><topic>Knee</topic><topic>Robots</topic><topic>Stability</topic><topic>State machines</topic><topic>Torso</topic><topic>Training</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Hazrati, Behzad</creatorcontrib><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Shoaran, Maryam</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazrati, Behzad</au><au>Dadashzadeh, Behnam</au><au>Shoaran, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy control of bipedal running with variable speed and apex height</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>7</volume><issue>4</issue><spage>1379</spage><epage>1391</epage><pages>1379-1391</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-019-00518-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9666-4535</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2019-12, Vol.7 (4), p.1379-1391 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2312577722 |
source | SpringerNature Journals |
subjects | Actuators Complexity Computer simulation Control Control and Systems Theory Controllers Dynamical Systems Engineering Fuzzy control Fuzzy logic Iterative methods Knee Robots Stability State machines Torso Training Velocity Vibration |
title | Fuzzy control of bipedal running with variable speed and apex height |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20control%20of%20bipedal%20running%20with%20variable%20speed%20and%20apex%20height&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Hazrati,%20Behzad&rft.date=2019-12-01&rft.volume=7&rft.issue=4&rft.spage=1379&rft.epage=1391&rft.pages=1379-1391&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-019-00518-9&rft_dat=%3Cproquest_cross%3E2312577722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312577722&rft_id=info:pmid/&rfr_iscdi=true |