Fuzzy control of bipedal running with variable speed and apex height

In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2019-12, Vol.7 (4), p.1379-1391
Hauptverfasser: Hazrati, Behzad, Dadashzadeh, Behnam, Shoaran, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391
container_issue 4
container_start_page 1379
container_title International journal of dynamics and control
container_volume 7
creator Hazrati, Behzad
Dadashzadeh, Behnam
Shoaran, Maryam
description In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.
doi_str_mv 10.1007/s40435-019-00518-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312577722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312577722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwFPFcn07RpjrK6Kix4UfAW0na626W2NWn9s5_eaEVvHoYZmPfeDD_GTgWcCwB14SXIOIlA6AggEVmkD9gMhU4iTHV2-DtnT8ds4f0OAFBIQKln7Go17vcfvOjawXUN7yqe1z2VtuFubNu63fC3etjyV-tqmzfEfU9UctuG6umdb6nebIcTdlTZxtPip8_Z4-r6YXkbre9v7paX66jAWOooyWUeSyrjjHSFuQKbpSlQIpQuFeagw84WCaakMS2qMjwI0ioShdRISsVzdjbl9q57GckPZteNrg0nDcYCE6UUYlDhpCpc572jyvSufrbuwwgwX8DMBMwEYOYbmNHBFE8mH8Tthtxf9D-uT60AbNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312577722</pqid></control><display><type>article</type><title>Fuzzy control of bipedal running with variable speed and apex height</title><source>SpringerNature Journals</source><creator>Hazrati, Behzad ; Dadashzadeh, Behnam ; Shoaran, Maryam</creator><creatorcontrib>Hazrati, Behzad ; Dadashzadeh, Behnam ; Shoaran, Maryam</creatorcontrib><description>In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-019-00518-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuators ; Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Controllers ; Dynamical Systems ; Engineering ; Fuzzy control ; Fuzzy logic ; Iterative methods ; Knee ; Robots ; Stability ; State machines ; Torso ; Training ; Velocity ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-12, Vol.7 (4), p.1379-1391</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</citedby><cites>FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</cites><orcidid>0000-0002-9666-4535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-019-00518-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-019-00518-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Hazrati, Behzad</creatorcontrib><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Shoaran, Maryam</creatorcontrib><title>Fuzzy control of bipedal running with variable speed and apex height</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.</description><subject>Actuators</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Iterative methods</subject><subject>Knee</subject><subject>Robots</subject><subject>Stability</subject><subject>State machines</subject><subject>Torso</subject><subject>Training</subject><subject>Velocity</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouKz7BTwFPFcn07RpjrK6Kix4UfAW0na626W2NWn9s5_eaEVvHoYZmPfeDD_GTgWcCwB14SXIOIlA6AggEVmkD9gMhU4iTHV2-DtnT8ds4f0OAFBIQKln7Go17vcfvOjawXUN7yqe1z2VtuFubNu63fC3etjyV-tqmzfEfU9UctuG6umdb6nebIcTdlTZxtPip8_Z4-r6YXkbre9v7paX66jAWOooyWUeSyrjjHSFuQKbpSlQIpQuFeagw84WCaakMS2qMjwI0ioShdRISsVzdjbl9q57GckPZteNrg0nDcYCE6UUYlDhpCpc572jyvSufrbuwwgwX8DMBMwEYOYbmNHBFE8mH8Tthtxf9D-uT60AbNQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hazrati, Behzad</creator><creator>Dadashzadeh, Behnam</creator><creator>Shoaran, Maryam</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9666-4535</orcidid></search><sort><creationdate>20191201</creationdate><title>Fuzzy control of bipedal running with variable speed and apex height</title><author>Hazrati, Behzad ; Dadashzadeh, Behnam ; Shoaran, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2349-5b4b34ed38e9f2b70a8660e5179d72b094edac526e926cfd24904a7e1c492e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Iterative methods</topic><topic>Knee</topic><topic>Robots</topic><topic>Stability</topic><topic>State machines</topic><topic>Torso</topic><topic>Training</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Hazrati, Behzad</creatorcontrib><creatorcontrib>Dadashzadeh, Behnam</creatorcontrib><creatorcontrib>Shoaran, Maryam</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazrati, Behzad</au><au>Dadashzadeh, Behnam</au><au>Shoaran, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy control of bipedal running with variable speed and apex height</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>7</volume><issue>4</issue><spage>1379</spage><epage>1391</epage><pages>1379-1391</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this paper we propose a fuzzy-based control scheme to generate stable planar biped running gaits with variable apex height and velocity. The considered biped robot model includes five links with locked torso angles, point feet, and four actuators at the hip and knees. The controller includes two separate levels: upper-level and lower-level. The lower-level part is composed of a state machine, where the trajectory of running sub-phases and their switching time are controlled. The upper-level part includes an event-based fuzzy logic controller that is called at the apex of each flight phase. We use an offline fuzzy training process for designing fuzzy rules before controlling the robot. Fuzzy training is an iterative computational process that is repeated until convergence. Outputs of the fuzzy controller are fed into the state machine to control the running gaits. Simulation results show that the proposed control strategy generates stable gaits with controllable apex height and velocity in each step. Finally, the effects of apex height and velocity in running efficiency are investigated and optimum height is calculated as a function of running velocity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-019-00518-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9666-4535</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2019-12, Vol.7 (4), p.1379-1391
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2312577722
source SpringerNature Journals
subjects Actuators
Complexity
Computer simulation
Control
Control and Systems Theory
Controllers
Dynamical Systems
Engineering
Fuzzy control
Fuzzy logic
Iterative methods
Knee
Robots
Stability
State machines
Torso
Training
Velocity
Vibration
title Fuzzy control of bipedal running with variable speed and apex height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20control%20of%20bipedal%20running%20with%20variable%20speed%20and%20apex%20height&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Hazrati,%20Behzad&rft.date=2019-12-01&rft.volume=7&rft.issue=4&rft.spage=1379&rft.epage=1391&rft.pages=1379-1391&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-019-00518-9&rft_dat=%3Cproquest_cross%3E2312577722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312577722&rft_id=info:pmid/&rfr_iscdi=true