On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO

Lyapunov exponents are related to the exponentially fast divergence or convergence of nearby orbits in phase space, and they can be used to evaluate the Kaplan–Yorke dimension. In this manner, since the existence of a positive Lyapunov exponent (LE+) is taken as an indication that chaotic behavior e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2019-12, Vol.7 (4), p.1157-1172
Hauptverfasser: Silva-Juárez, Alejandro, Morales-Pérez, Carlos Javier, de la Fraga, Luis Gerardo, Tlelo-Cuautle, Esteban, Rangel-Magdaleno, José de Jesús
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 4
container_start_page 1157
container_title International journal of dynamics and control
container_volume 7
creator Silva-Juárez, Alejandro
Morales-Pérez, Carlos Javier
de la Fraga, Luis Gerardo
Tlelo-Cuautle, Esteban
Rangel-Magdaleno, José de Jesús
description Lyapunov exponents are related to the exponentially fast divergence or convergence of nearby orbits in phase space, and they can be used to evaluate the Kaplan–Yorke dimension. In this manner, since the existence of a positive Lyapunov exponent (LE+) is taken as an indication that chaotic behavior exists, and due to the huge search spaces of the design variables of chaotic oscillators, we show the application of differential evolution (DE) and particle swarm optimization (PSO) algorithms to maximize LE+. Four chaotic oscillators are optimized herein, for which we detail the evaluation of their equilibrium points and their eigenvalues that are used to estimate the step-size h to perform appropriate numerical simulation. Both DE and PSO are calibrated to perform different number of generations with three different sizes of individuals in the populations, and with search spaces around the values already published for the four chaotic oscillators. As a result, we show that both DE and PSO algorithms provide higher values of LE+ and Kaplan–Yorke dimension compared to the ones already published in the literature.
doi_str_mv 10.1007/s40435-019-00574-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312577499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312577499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2341-dddb3668bff394b93536fcf76d985eef0373caa8a6282565c6e38931f2261de23</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWLQv4CrgejT_M1lKrT9QqKCiu5BmkjalTcZkWlqf3qkjunP13cU994MDwAVGVxih8jozxCgvEJYFQrxkBT4CA4IlL4iQ1fFvrt5PwTDnJUKIYIYIkwPwNg1wrXd-7T99mMN2YWETs2_91sLJXjebELfQ7poYbGhhdNAsdGy9gTEbv1rpNqYMddOs9gf8dgx1qOHT8_QcnDi9ynb4c8_A6934ZfRQTKb3j6ObSWEIZbio63pGhahmzlHJZpJyKpxxpahlxa11iJbUaF1pQSrCBTfC0kpS7AgRuLaEnoHLfrdJ8WNjc6uWcZNC91IRigkvSyZl1yJ9y6SYc7JONcmvddorjNTBoeodqs6h-naocAfRHspdOcxt-pv-h_oC5950Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312577499</pqid></control><display><type>article</type><title>On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO</title><source>Springer Nature - Complete Springer Journals</source><creator>Silva-Juárez, Alejandro ; Morales-Pérez, Carlos Javier ; de la Fraga, Luis Gerardo ; Tlelo-Cuautle, Esteban ; Rangel-Magdaleno, José de Jesús</creator><creatorcontrib>Silva-Juárez, Alejandro ; Morales-Pérez, Carlos Javier ; de la Fraga, Luis Gerardo ; Tlelo-Cuautle, Esteban ; Rangel-Magdaleno, José de Jesús</creatorcontrib><description>Lyapunov exponents are related to the exponentially fast divergence or convergence of nearby orbits in phase space, and they can be used to evaluate the Kaplan–Yorke dimension. In this manner, since the existence of a positive Lyapunov exponent (LE+) is taken as an indication that chaotic behavior exists, and due to the huge search spaces of the design variables of chaotic oscillators, we show the application of differential evolution (DE) and particle swarm optimization (PSO) algorithms to maximize LE+. Four chaotic oscillators are optimized herein, for which we detail the evaluation of their equilibrium points and their eigenvalues that are used to estimate the step-size h to perform appropriate numerical simulation. Both DE and PSO are calibrated to perform different number of generations with three different sizes of individuals in the populations, and with search spaces around the values already published for the four chaotic oscillators. As a result, we show that both DE and PSO algorithms provide higher values of LE+ and Kaplan–Yorke dimension compared to the ones already published in the literature.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-019-00574-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Chaos theory ; Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Divergence ; Dynamical Systems ; Eigenvalues ; Engineering ; Evolutionary computation ; Liapunov exponents ; Oscillators ; Particle swarm optimization ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-12, Vol.7 (4), p.1157-1172</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2341-dddb3668bff394b93536fcf76d985eef0373caa8a6282565c6e38931f2261de23</citedby><cites>FETCH-LOGICAL-c2341-dddb3668bff394b93536fcf76d985eef0373caa8a6282565c6e38931f2261de23</cites><orcidid>0000-0001-7187-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-019-00574-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-019-00574-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Silva-Juárez, Alejandro</creatorcontrib><creatorcontrib>Morales-Pérez, Carlos Javier</creatorcontrib><creatorcontrib>de la Fraga, Luis Gerardo</creatorcontrib><creatorcontrib>Tlelo-Cuautle, Esteban</creatorcontrib><creatorcontrib>Rangel-Magdaleno, José de Jesús</creatorcontrib><title>On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>Lyapunov exponents are related to the exponentially fast divergence or convergence of nearby orbits in phase space, and they can be used to evaluate the Kaplan–Yorke dimension. In this manner, since the existence of a positive Lyapunov exponent (LE+) is taken as an indication that chaotic behavior exists, and due to the huge search spaces of the design variables of chaotic oscillators, we show the application of differential evolution (DE) and particle swarm optimization (PSO) algorithms to maximize LE+. Four chaotic oscillators are optimized herein, for which we detail the evaluation of their equilibrium points and their eigenvalues that are used to estimate the step-size h to perform appropriate numerical simulation. Both DE and PSO are calibrated to perform different number of generations with three different sizes of individuals in the populations, and with search spaces around the values already published for the four chaotic oscillators. As a result, we show that both DE and PSO algorithms provide higher values of LE+ and Kaplan–Yorke dimension compared to the ones already published in the literature.</description><subject>Algorithms</subject><subject>Chaos theory</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Divergence</subject><subject>Dynamical Systems</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Evolutionary computation</subject><subject>Liapunov exponents</subject><subject>Oscillators</subject><subject>Particle swarm optimization</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWLQv4CrgejT_M1lKrT9QqKCiu5BmkjalTcZkWlqf3qkjunP13cU994MDwAVGVxih8jozxCgvEJYFQrxkBT4CA4IlL4iQ1fFvrt5PwTDnJUKIYIYIkwPwNg1wrXd-7T99mMN2YWETs2_91sLJXjebELfQ7poYbGhhdNAsdGy9gTEbv1rpNqYMddOs9gf8dgx1qOHT8_QcnDi9ynb4c8_A6934ZfRQTKb3j6ObSWEIZbio63pGhahmzlHJZpJyKpxxpahlxa11iJbUaF1pQSrCBTfC0kpS7AgRuLaEnoHLfrdJ8WNjc6uWcZNC91IRigkvSyZl1yJ9y6SYc7JONcmvddorjNTBoeodqs6h-naocAfRHspdOcxt-pv-h_oC5950Bw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Silva-Juárez, Alejandro</creator><creator>Morales-Pérez, Carlos Javier</creator><creator>de la Fraga, Luis Gerardo</creator><creator>Tlelo-Cuautle, Esteban</creator><creator>Rangel-Magdaleno, José de Jesús</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7187-4686</orcidid></search><sort><creationdate>20191201</creationdate><title>On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO</title><author>Silva-Juárez, Alejandro ; Morales-Pérez, Carlos Javier ; de la Fraga, Luis Gerardo ; Tlelo-Cuautle, Esteban ; Rangel-Magdaleno, José de Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2341-dddb3668bff394b93536fcf76d985eef0373caa8a6282565c6e38931f2261de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Chaos theory</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Divergence</topic><topic>Dynamical Systems</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Evolutionary computation</topic><topic>Liapunov exponents</topic><topic>Oscillators</topic><topic>Particle swarm optimization</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Silva-Juárez, Alejandro</creatorcontrib><creatorcontrib>Morales-Pérez, Carlos Javier</creatorcontrib><creatorcontrib>de la Fraga, Luis Gerardo</creatorcontrib><creatorcontrib>Tlelo-Cuautle, Esteban</creatorcontrib><creatorcontrib>Rangel-Magdaleno, José de Jesús</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva-Juárez, Alejandro</au><au>Morales-Pérez, Carlos Javier</au><au>de la Fraga, Luis Gerardo</au><au>Tlelo-Cuautle, Esteban</au><au>Rangel-Magdaleno, José de Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>7</volume><issue>4</issue><spage>1157</spage><epage>1172</epage><pages>1157-1172</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>Lyapunov exponents are related to the exponentially fast divergence or convergence of nearby orbits in phase space, and they can be used to evaluate the Kaplan–Yorke dimension. In this manner, since the existence of a positive Lyapunov exponent (LE+) is taken as an indication that chaotic behavior exists, and due to the huge search spaces of the design variables of chaotic oscillators, we show the application of differential evolution (DE) and particle swarm optimization (PSO) algorithms to maximize LE+. Four chaotic oscillators are optimized herein, for which we detail the evaluation of their equilibrium points and their eigenvalues that are used to estimate the step-size h to perform appropriate numerical simulation. Both DE and PSO are calibrated to perform different number of generations with three different sizes of individuals in the populations, and with search spaces around the values already published for the four chaotic oscillators. As a result, we show that both DE and PSO algorithms provide higher values of LE+ and Kaplan–Yorke dimension compared to the ones already published in the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-019-00574-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7187-4686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2019-12, Vol.7 (4), p.1157-1172
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2312577499
source Springer Nature - Complete Springer Journals
subjects Algorithms
Chaos theory
Complexity
Computer simulation
Control
Control and Systems Theory
Divergence
Dynamical Systems
Eigenvalues
Engineering
Evolutionary computation
Liapunov exponents
Oscillators
Particle swarm optimization
Vibration
title On maximizing the positive Lyapunov exponent of chaotic oscillators applying DE and PSO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20maximizing%20the%20positive%20Lyapunov%20exponent%20of%20chaotic%20oscillators%20applying%20DE%20and%20PSO&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Silva-Ju%C3%A1rez,%20Alejandro&rft.date=2019-12-01&rft.volume=7&rft.issue=4&rft.spage=1157&rft.epage=1172&rft.pages=1157-1172&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-019-00574-1&rft_dat=%3Cproquest_cross%3E2312577499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312577499&rft_id=info:pmid/&rfr_iscdi=true