Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

The power spectral density (PSD) of any time-dependent stochastic process Xt is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of Xt over an infinitely large observation time T, that is, it is defined as an ensem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2018-02, Vol.20 (2), p.23029
Hauptverfasser: Krapf, Diego, Marinari, Enzo, Metzler, Ralf, Oshanin, Gleb, Xu, Xinran, Squarcini, Alessio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23029
container_title New journal of physics
container_volume 20
creator Krapf, Diego
Marinari, Enzo
Metzler, Ralf
Oshanin, Gleb
Xu, Xinran
Squarcini, Alessio
description The power spectral density (PSD) of any time-dependent stochastic process Xt is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of Xt over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T → ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.
doi_str_mv 10.1088/1367-2630/aaa67c
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2312526165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53b073a48eef42bfb97aac98c0b79c19</doaj_id><sourcerecordid>2312526165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-6eefb90b873dc83660a6f4404afe52de70803b127a9fd1941bcfe8fd6c94b40a3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQRk1ooGnSfZeCLEKhNxk9LMvdJSEvuJAu2mURY1lKbBzJlZxe7r-PXIekhdDViNGZMxJfUXyicExBqRPKZbViksMJIsrK7BR7L613f53fFx9S6gEoVYztFT-_hY2NJI3WTBEH0lqfumlLgiNIUufvBkvOYtj4Dj3JRJ-5ELdfyeYeJxK8JSZfoG_n6sNEBovRExfDA-mmg2LX4ZDsx-e6X_y4vPh-fr1a317dnJ-uV0YoNq2kta6poVEVb43iUgJKJwQIdLZkra1AAW8oq7B2La0FbYyzyrXS1KIRgHy_uFm8bcBej7F7wLjVATv9pxHincY4dWawuuQNVByFyjsFa_LeCtHUykBT1YbW2fV5cd3j8I_q-nSt5x4wzjgt5W-a2cOFHWP49WjTpPvwGH3-qs4IK5mksswULJSJIaVo3YuWgp7D03M6ek5HL-HlkS_LSBfGV-d_8KM3cN-PmoFm84uB1XpsHX8Cf_qnnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312526165</pqid></control><display><type>article</type><title>Power spectral density of a single Brownian trajectory: what one can and cannot learn from it</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Krapf, Diego ; Marinari, Enzo ; Metzler, Ralf ; Oshanin, Gleb ; Xu, Xinran ; Squarcini, Alessio</creator><creatorcontrib>Krapf, Diego ; Marinari, Enzo ; Metzler, Ralf ; Oshanin, Gleb ; Xu, Xinran ; Squarcini, Alessio</creatorcontrib><description>The power spectral density (PSD) of any time-dependent stochastic process Xt is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of Xt over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T → ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aaa67c</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>05.40.Jc ; 87.80.Nj ; Amplitudes ; Brownian motion ; Computer simulation ; Covariance ; exact results ; Fourier transforms ; Mathematical analysis ; Mathematics ; Particle tracking ; Physics ; Power spectral density ; Probability ; probability density function ; Probability density functions ; Random walk ; single-trajectory analysis ; Spectra ; Spectral density function ; Stochastic processes ; Time dependence ; Variation</subject><ispartof>New journal of physics, 2018-02, Vol.20 (2), p.23029</ispartof><rights>2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-6eefb90b873dc83660a6f4404afe52de70803b127a9fd1941bcfe8fd6c94b40a3</citedby><cites>FETCH-LOGICAL-c482t-6eefb90b873dc83660a6f4404afe52de70803b127a9fd1941bcfe8fd6c94b40a3</cites><orcidid>0000-0002-6013-7020 ; 0000-0001-8467-3226 ; 0000-0002-3464-4133 ; 0000-0002-2833-5553 ; 0000-0002-6749-2391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aaa67c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,27924,27925,38868,38890,53840,53867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02323156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Krapf, Diego</creatorcontrib><creatorcontrib>Marinari, Enzo</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><creatorcontrib>Oshanin, Gleb</creatorcontrib><creatorcontrib>Xu, Xinran</creatorcontrib><creatorcontrib>Squarcini, Alessio</creatorcontrib><title>Power spectral density of a single Brownian trajectory: what one can and cannot learn from it</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The power spectral density (PSD) of any time-dependent stochastic process Xt is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of Xt over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T → ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.</description><subject>05.40.Jc</subject><subject>87.80.Nj</subject><subject>Amplitudes</subject><subject>Brownian motion</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>exact results</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Particle tracking</subject><subject>Physics</subject><subject>Power spectral density</subject><subject>Probability</subject><subject>probability density function</subject><subject>Probability density functions</subject><subject>Random walk</subject><subject>single-trajectory analysis</subject><subject>Spectra</subject><subject>Spectral density function</subject><subject>Stochastic processes</subject><subject>Time dependence</subject><subject>Variation</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtr3TAQRk1ooGnSfZeCLEKhNxk9LMvdJSEvuJAu2mURY1lKbBzJlZxe7r-PXIekhdDViNGZMxJfUXyicExBqRPKZbViksMJIsrK7BR7L613f53fFx9S6gEoVYztFT-_hY2NJI3WTBEH0lqfumlLgiNIUufvBkvOYtj4Dj3JRJ-5ELdfyeYeJxK8JSZfoG_n6sNEBovRExfDA-mmg2LX4ZDsx-e6X_y4vPh-fr1a317dnJ-uV0YoNq2kta6poVEVb43iUgJKJwQIdLZkra1AAW8oq7B2La0FbYyzyrXS1KIRgHy_uFm8bcBej7F7wLjVATv9pxHincY4dWawuuQNVByFyjsFa_LeCtHUykBT1YbW2fV5cd3j8I_q-nSt5x4wzjgt5W-a2cOFHWP49WjTpPvwGH3-qs4IK5mksswULJSJIaVo3YuWgp7D03M6ek5HL-HlkS_LSBfGV-d_8KM3cN-PmoFm84uB1XpsHX8Cf_qnnA</recordid><startdate>20180209</startdate><enddate>20180209</enddate><creator>Krapf, Diego</creator><creator>Marinari, Enzo</creator><creator>Metzler, Ralf</creator><creator>Oshanin, Gleb</creator><creator>Xu, Xinran</creator><creator>Squarcini, Alessio</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6013-7020</orcidid><orcidid>https://orcid.org/0000-0001-8467-3226</orcidid><orcidid>https://orcid.org/0000-0002-3464-4133</orcidid><orcidid>https://orcid.org/0000-0002-2833-5553</orcidid><orcidid>https://orcid.org/0000-0002-6749-2391</orcidid></search><sort><creationdate>20180209</creationdate><title>Power spectral density of a single Brownian trajectory: what one can and cannot learn from it</title><author>Krapf, Diego ; Marinari, Enzo ; Metzler, Ralf ; Oshanin, Gleb ; Xu, Xinran ; Squarcini, Alessio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-6eefb90b873dc83660a6f4404afe52de70803b127a9fd1941bcfe8fd6c94b40a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>05.40.Jc</topic><topic>87.80.Nj</topic><topic>Amplitudes</topic><topic>Brownian motion</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>exact results</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Particle tracking</topic><topic>Physics</topic><topic>Power spectral density</topic><topic>Probability</topic><topic>probability density function</topic><topic>Probability density functions</topic><topic>Random walk</topic><topic>single-trajectory analysis</topic><topic>Spectra</topic><topic>Spectral density function</topic><topic>Stochastic processes</topic><topic>Time dependence</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krapf, Diego</creatorcontrib><creatorcontrib>Marinari, Enzo</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><creatorcontrib>Oshanin, Gleb</creatorcontrib><creatorcontrib>Xu, Xinran</creatorcontrib><creatorcontrib>Squarcini, Alessio</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krapf, Diego</au><au>Marinari, Enzo</au><au>Metzler, Ralf</au><au>Oshanin, Gleb</au><au>Xu, Xinran</au><au>Squarcini, Alessio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power spectral density of a single Brownian trajectory: what one can and cannot learn from it</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2018-02-09</date><risdate>2018</risdate><volume>20</volume><issue>2</issue><spage>23029</spage><pages>23029-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The power spectral density (PSD) of any time-dependent stochastic process Xt is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of Xt over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T → ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aaa67c</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6013-7020</orcidid><orcidid>https://orcid.org/0000-0001-8467-3226</orcidid><orcidid>https://orcid.org/0000-0002-3464-4133</orcidid><orcidid>https://orcid.org/0000-0002-2833-5553</orcidid><orcidid>https://orcid.org/0000-0002-6749-2391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2018-02, Vol.20 (2), p.23029
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2312526165
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 05.40.Jc
87.80.Nj
Amplitudes
Brownian motion
Computer simulation
Covariance
exact results
Fourier transforms
Mathematical analysis
Mathematics
Particle tracking
Physics
Power spectral density
Probability
probability density function
Probability density functions
Random walk
single-trajectory analysis
Spectra
Spectral density function
Stochastic processes
Time dependence
Variation
title Power spectral density of a single Brownian trajectory: what one can and cannot learn from it
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20spectral%20density%20of%20a%20single%20Brownian%20trajectory:%20what%20one%20can%20and%20cannot%20learn%20from%20it&rft.jtitle=New%20journal%20of%20physics&rft.au=Krapf,%20Diego&rft.date=2018-02-09&rft.volume=20&rft.issue=2&rft.spage=23029&rft.pages=23029-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aaa67c&rft_dat=%3Cproquest_iop_j%3E2312526165%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312526165&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_53b073a48eef42bfb97aac98c0b79c19&rfr_iscdi=true