Microstructural and in‐depth electrochemical characterization of Zn diffusion layers on aluminum 3xxx alloy
AA 3XXX alloys are widely used in heating, ventilation, and air conditioning (HVAC) field. Diffusion joining using a filler metal together with flux is employed in some applications as for heat exchangers. In this work, the effect of diffusion of a Zn‐based flux on both microstructure and electroche...
Gespeichert in:
Veröffentlicht in: | Surface and interface analysis 2019-12, Vol.51 (12), p.1165-1172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1172 |
---|---|
container_issue | 12 |
container_start_page | 1165 |
container_title | Surface and interface analysis |
container_volume | 51 |
creator | Lanzutti, Alex Andreatta, Francesco Magnan, Michele Fedrizzi, Lorenzo |
description | AA 3XXX alloys are widely used in heating, ventilation, and air conditioning (HVAC) field. Diffusion joining using a filler metal together with flux is employed in some applications as for heat exchangers. In this work, the effect of diffusion of a Zn‐based flux on both microstructure and electrochemical behavior has been investigated. In particular, an AA3xxx was coated with a Zn‐rich flux and subjected to controlled atmosphere brazing (CAB). Glow discharge optical emission spectroscopy (GDOES) composition profiles were acquired in order to determine the Zn distribution in the diffusion layer. The GDOES was also employed to produce a controlled erosion of the surface in order to obtain craters with defined depths in the Zn diffusion layer, in which electrochemical analyses could be performed. The Volta potential maps at different depths in the Zn diffusion layer were obtained by scanning Kelvin probe force microscope (SKPFM). The Zn diffusion layer was also investigated by means of Scanning Electron Microscope‐Energy Dispersive X‐ray Spectroscopy (SEM‐EDXS) and the chemical composition of the phases present in the regions was investigated by SKPFM. Finally, the electrochemical microcell was used in the produced craters in order to determine the electrochemical behavior along the Zn diffusion profile. SKPFM and microcell results showed a correlation between the Zn content and the electrochemical properties. In particular, a higher Zn content in the diffusion layer leads to an increase of the Volta potential difference between the intermetallic particles and the matrix. The electrochemical measurements also showed that the Zn diffusion layer provides galvanic protection to the underlaying aluminum alloy. |
doi_str_mv | 10.1002/sia.6602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312458413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312458413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-44f3b5165e3067313984d0a67e4269d2cf489418b9b346141a06e1f2784f89ff3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmak6RpsizipVBxoW7chDST0JS51GQGO658BJ_RJ3HGunV1zs__cQ58CJ0DmQAh9CoFMxGC0AM0AqJEphTIQzQiwGlGOYVjdJLShhAimRQjVD4EG-vUxNY2bTQFNlWOQ_X9-ZW7bbPGrnC2ibVduzLYvrZrE41tXAwfpgl1hWuPXyucB-_bNOTCdC4m3G-maMtQtSVmu92uT0XdnaIjb4rkzv7mGL3c3jxf32fLx7vF9XyZWaoYzTj3bDUFMXWMiBkDpiTPiREzx6lQObWeS8VBrtSKcQEcDBEOPJ1J7qXyno3Rxf7uNtZvrUuN3tRtrPqXmjKgfCo5sJ663FODgRSd19sYShM7DUQPMnUvUw8yezTbo--hcN2_nH5azH_5H1rYdvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312458413</pqid></control><display><type>article</type><title>Microstructural and in‐depth electrochemical characterization of Zn diffusion layers on aluminum 3xxx alloy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lanzutti, Alex ; Andreatta, Francesco ; Magnan, Michele ; Fedrizzi, Lorenzo</creator><creatorcontrib>Lanzutti, Alex ; Andreatta, Francesco ; Magnan, Michele ; Fedrizzi, Lorenzo</creatorcontrib><description>AA 3XXX alloys are widely used in heating, ventilation, and air conditioning (HVAC) field. Diffusion joining using a filler metal together with flux is employed in some applications as for heat exchangers. In this work, the effect of diffusion of a Zn‐based flux on both microstructure and electrochemical behavior has been investigated. In particular, an AA3xxx was coated with a Zn‐rich flux and subjected to controlled atmosphere brazing (CAB). Glow discharge optical emission spectroscopy (GDOES) composition profiles were acquired in order to determine the Zn distribution in the diffusion layer. The GDOES was also employed to produce a controlled erosion of the surface in order to obtain craters with defined depths in the Zn diffusion layer, in which electrochemical analyses could be performed. The Volta potential maps at different depths in the Zn diffusion layer were obtained by scanning Kelvin probe force microscope (SKPFM). The Zn diffusion layer was also investigated by means of Scanning Electron Microscope‐Energy Dispersive X‐ray Spectroscopy (SEM‐EDXS) and the chemical composition of the phases present in the regions was investigated by SKPFM. Finally, the electrochemical microcell was used in the produced craters in order to determine the electrochemical behavior along the Zn diffusion profile. SKPFM and microcell results showed a correlation between the Zn content and the electrochemical properties. In particular, a higher Zn content in the diffusion layer leads to an increase of the Volta potential difference between the intermetallic particles and the matrix. The electrochemical measurements also showed that the Zn diffusion layer provides galvanic protection to the underlaying aluminum alloy.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.6602</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>3003 aluminum alloy ; Air conditioners ; Air conditioning ; Alloys ; Aluminum base alloys ; Brazing atmospheres ; Brazing fluxes ; Chemical composition ; Craters ; Diffusion effects ; Diffusion layers ; Electrochemical analysis ; electrochemical microcell ; Erosion control ; Filler metals ; Flux ; Glow discharges ; Heat exchangers ; Microstructure ; Optical emission spectroscopy ; Organic chemistry ; Rf‐GDOES ; scanning kelvin probe force microscope ; Spectrum analysis ; Ventilation ; Zinc ; Zn brazing ; Zn diffusion layer</subject><ispartof>Surface and interface analysis, 2019-12, Vol.51 (12), p.1165-1172</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-44f3b5165e3067313984d0a67e4269d2cf489418b9b346141a06e1f2784f89ff3</citedby><cites>FETCH-LOGICAL-c2932-44f3b5165e3067313984d0a67e4269d2cf489418b9b346141a06e1f2784f89ff3</cites><orcidid>0000-0002-3256-3516 ; 0000-0002-7127-1567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.6602$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.6602$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lanzutti, Alex</creatorcontrib><creatorcontrib>Andreatta, Francesco</creatorcontrib><creatorcontrib>Magnan, Michele</creatorcontrib><creatorcontrib>Fedrizzi, Lorenzo</creatorcontrib><title>Microstructural and in‐depth electrochemical characterization of Zn diffusion layers on aluminum 3xxx alloy</title><title>Surface and interface analysis</title><description>AA 3XXX alloys are widely used in heating, ventilation, and air conditioning (HVAC) field. Diffusion joining using a filler metal together with flux is employed in some applications as for heat exchangers. In this work, the effect of diffusion of a Zn‐based flux on both microstructure and electrochemical behavior has been investigated. In particular, an AA3xxx was coated with a Zn‐rich flux and subjected to controlled atmosphere brazing (CAB). Glow discharge optical emission spectroscopy (GDOES) composition profiles were acquired in order to determine the Zn distribution in the diffusion layer. The GDOES was also employed to produce a controlled erosion of the surface in order to obtain craters with defined depths in the Zn diffusion layer, in which electrochemical analyses could be performed. The Volta potential maps at different depths in the Zn diffusion layer were obtained by scanning Kelvin probe force microscope (SKPFM). The Zn diffusion layer was also investigated by means of Scanning Electron Microscope‐Energy Dispersive X‐ray Spectroscopy (SEM‐EDXS) and the chemical composition of the phases present in the regions was investigated by SKPFM. Finally, the electrochemical microcell was used in the produced craters in order to determine the electrochemical behavior along the Zn diffusion profile. SKPFM and microcell results showed a correlation between the Zn content and the electrochemical properties. In particular, a higher Zn content in the diffusion layer leads to an increase of the Volta potential difference between the intermetallic particles and the matrix. The electrochemical measurements also showed that the Zn diffusion layer provides galvanic protection to the underlaying aluminum alloy.</description><subject>3003 aluminum alloy</subject><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Brazing atmospheres</subject><subject>Brazing fluxes</subject><subject>Chemical composition</subject><subject>Craters</subject><subject>Diffusion effects</subject><subject>Diffusion layers</subject><subject>Electrochemical analysis</subject><subject>electrochemical microcell</subject><subject>Erosion control</subject><subject>Filler metals</subject><subject>Flux</subject><subject>Glow discharges</subject><subject>Heat exchangers</subject><subject>Microstructure</subject><subject>Optical emission spectroscopy</subject><subject>Organic chemistry</subject><subject>Rf‐GDOES</subject><subject>scanning kelvin probe force microscope</subject><subject>Spectrum analysis</subject><subject>Ventilation</subject><subject>Zinc</subject><subject>Zn brazing</subject><subject>Zn diffusion layer</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmak6RpsizipVBxoW7chDST0JS51GQGO658BJ_RJ3HGunV1zs__cQ58CJ0DmQAh9CoFMxGC0AM0AqJEphTIQzQiwGlGOYVjdJLShhAimRQjVD4EG-vUxNY2bTQFNlWOQ_X9-ZW7bbPGrnC2ibVduzLYvrZrE41tXAwfpgl1hWuPXyucB-_bNOTCdC4m3G-maMtQtSVmu92uT0XdnaIjb4rkzv7mGL3c3jxf32fLx7vF9XyZWaoYzTj3bDUFMXWMiBkDpiTPiREzx6lQObWeS8VBrtSKcQEcDBEOPJ1J7qXyno3Rxf7uNtZvrUuN3tRtrPqXmjKgfCo5sJ663FODgRSd19sYShM7DUQPMnUvUw8yezTbo--hcN2_nH5azH_5H1rYdvc</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Lanzutti, Alex</creator><creator>Andreatta, Francesco</creator><creator>Magnan, Michele</creator><creator>Fedrizzi, Lorenzo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3256-3516</orcidid><orcidid>https://orcid.org/0000-0002-7127-1567</orcidid></search><sort><creationdate>201912</creationdate><title>Microstructural and in‐depth electrochemical characterization of Zn diffusion layers on aluminum 3xxx alloy</title><author>Lanzutti, Alex ; Andreatta, Francesco ; Magnan, Michele ; Fedrizzi, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-44f3b5165e3067313984d0a67e4269d2cf489418b9b346141a06e1f2784f89ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3003 aluminum alloy</topic><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Brazing atmospheres</topic><topic>Brazing fluxes</topic><topic>Chemical composition</topic><topic>Craters</topic><topic>Diffusion effects</topic><topic>Diffusion layers</topic><topic>Electrochemical analysis</topic><topic>electrochemical microcell</topic><topic>Erosion control</topic><topic>Filler metals</topic><topic>Flux</topic><topic>Glow discharges</topic><topic>Heat exchangers</topic><topic>Microstructure</topic><topic>Optical emission spectroscopy</topic><topic>Organic chemistry</topic><topic>Rf‐GDOES</topic><topic>scanning kelvin probe force microscope</topic><topic>Spectrum analysis</topic><topic>Ventilation</topic><topic>Zinc</topic><topic>Zn brazing</topic><topic>Zn diffusion layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanzutti, Alex</creatorcontrib><creatorcontrib>Andreatta, Francesco</creatorcontrib><creatorcontrib>Magnan, Michele</creatorcontrib><creatorcontrib>Fedrizzi, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanzutti, Alex</au><au>Andreatta, Francesco</au><au>Magnan, Michele</au><au>Fedrizzi, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and in‐depth electrochemical characterization of Zn diffusion layers on aluminum 3xxx alloy</atitle><jtitle>Surface and interface analysis</jtitle><date>2019-12</date><risdate>2019</risdate><volume>51</volume><issue>12</issue><spage>1165</spage><epage>1172</epage><pages>1165-1172</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>AA 3XXX alloys are widely used in heating, ventilation, and air conditioning (HVAC) field. Diffusion joining using a filler metal together with flux is employed in some applications as for heat exchangers. In this work, the effect of diffusion of a Zn‐based flux on both microstructure and electrochemical behavior has been investigated. In particular, an AA3xxx was coated with a Zn‐rich flux and subjected to controlled atmosphere brazing (CAB). Glow discharge optical emission spectroscopy (GDOES) composition profiles were acquired in order to determine the Zn distribution in the diffusion layer. The GDOES was also employed to produce a controlled erosion of the surface in order to obtain craters with defined depths in the Zn diffusion layer, in which electrochemical analyses could be performed. The Volta potential maps at different depths in the Zn diffusion layer were obtained by scanning Kelvin probe force microscope (SKPFM). The Zn diffusion layer was also investigated by means of Scanning Electron Microscope‐Energy Dispersive X‐ray Spectroscopy (SEM‐EDXS) and the chemical composition of the phases present in the regions was investigated by SKPFM. Finally, the electrochemical microcell was used in the produced craters in order to determine the electrochemical behavior along the Zn diffusion profile. SKPFM and microcell results showed a correlation between the Zn content and the electrochemical properties. In particular, a higher Zn content in the diffusion layer leads to an increase of the Volta potential difference between the intermetallic particles and the matrix. The electrochemical measurements also showed that the Zn diffusion layer provides galvanic protection to the underlaying aluminum alloy.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.6602</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3256-3516</orcidid><orcidid>https://orcid.org/0000-0002-7127-1567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2019-12, Vol.51 (12), p.1165-1172 |
issn | 0142-2421 1096-9918 |
language | eng |
recordid | cdi_proquest_journals_2312458413 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3003 aluminum alloy Air conditioners Air conditioning Alloys Aluminum base alloys Brazing atmospheres Brazing fluxes Chemical composition Craters Diffusion effects Diffusion layers Electrochemical analysis electrochemical microcell Erosion control Filler metals Flux Glow discharges Heat exchangers Microstructure Optical emission spectroscopy Organic chemistry Rf‐GDOES scanning kelvin probe force microscope Spectrum analysis Ventilation Zinc Zn brazing Zn diffusion layer |
title | Microstructural and in‐depth electrochemical characterization of Zn diffusion layers on aluminum 3xxx alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20in%E2%80%90depth%20electrochemical%20characterization%20of%20Zn%20diffusion%20layers%20on%20aluminum%203xxx%20alloy&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Lanzutti,%20Alex&rft.date=2019-12&rft.volume=51&rft.issue=12&rft.spage=1165&rft.epage=1172&rft.pages=1165-1172&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.6602&rft_dat=%3Cproquest_cross%3E2312458413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312458413&rft_id=info:pmid/&rfr_iscdi=true |