Optimal power generation using dark states in dimers strongly coupled to their environment

Dark state protection has been proposed as a mechanism to increase the power output of light harvesting devices by reducing the rate of radiative recombination. Indeed many theoretical studies have reported increased power outputs in dimer systems which use quantum interference to generate dark stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2019-06, Vol.21 (6), p.63025
Hauptverfasser: Rouse, D M, Gauger, E M, Lovett, B W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 63025
container_title New journal of physics
container_volume 21
creator Rouse, D M
Gauger, E M
Lovett, B W
description Dark state protection has been proposed as a mechanism to increase the power output of light harvesting devices by reducing the rate of radiative recombination. Indeed many theoretical studies have reported increased power outputs in dimer systems which use quantum interference to generate dark states. These models have typically been restricted to particular geometries and to weakly coupled vibrational baths. Here we consider the experimentally-relevant strong vibrational coupling regime with no geometric restrictions on the dimer. We analyze how dark states can be formed in the dimer by numerically minimizing the emission rate of the lowest energy excited eigenstate, and then calculate the power output of the molecules with these dark states. We find that there are two distinct types of dark states depending on whether the monomers form homodimers, where energy splittings and dipole strengths are identical, or heterodimers, where there is some difference. Homodimers, which exploit destructive quantum interference, produce high power outputs but strong phonon couplings and perturbations from ideal geometries are extremely detrimental. Heterodimers, which are closer to the classical picture of a distinct donor and acceptor molecule, produce an intermediate power output that is relatively stable to these changes. The strong vibrational couplings typically found in organic molecules will suppress destructive interference and thus favor the dark-state enhancement offered by heterodimers.
doi_str_mv 10.1088/1367-2630/ab25ca
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312378100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_49dce56bad2b42819de03627e5e50e89</doaj_id><sourcerecordid>2312378100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9010a41a8fc928dbc37521dee754ba7b1ed76375be36a762c2e9405a81b5b2023</originalsourceid><addsrcrecordid>eNp1UT1PwzAQtRBIlMLOaImVUNv5ckZU8VGpUhdYWCx_XINLGgfbAfXfkxJUWJju9O7du7t3CF1SckMJ5zOaFmXCipTMpGK5lkdocoCO_-Sn6CyEDSGUcsYm6GXVRbuVDe7cJ3hcQwteRuta3Afb1thI_4ZDlBECti02dgs-DIB3bd3ssHZ914DB0eH4CtZjaD_sUNtCG8_RyVo2AS5-4hQ93989zR-T5ephMb9dJjqjRUwqQonMqORrXTFulE7LnFEDUOaZkqWiYMpiwBSkhSwLphlUGcklpypXjLB0ihajrnFyIzo_nON3wkkrvgHnayF9tLoBkVVGQ14oaZjKGKeVAZIWrIQccgK8GrSuRq3Ou_ceQhQb1_t2WF-wlLK05JSQgUVGlvYuBA_rw1RKxP4bYm-32Nstxm8MLddji3Xdr-a_9C9YzovO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312378100</pqid></control><display><type>article</type><title>Optimal power generation using dark states in dimers strongly coupled to their environment</title><source>Institute of Physics Open Access Journal Titles</source><source>Directory of Open Access Journals</source><source>Institute of Physics IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Rouse, D M ; Gauger, E M ; Lovett, B W</creator><creatorcontrib>Rouse, D M ; Gauger, E M ; Lovett, B W</creatorcontrib><description>Dark state protection has been proposed as a mechanism to increase the power output of light harvesting devices by reducing the rate of radiative recombination. Indeed many theoretical studies have reported increased power outputs in dimer systems which use quantum interference to generate dark states. These models have typically been restricted to particular geometries and to weakly coupled vibrational baths. Here we consider the experimentally-relevant strong vibrational coupling regime with no geometric restrictions on the dimer. We analyze how dark states can be formed in the dimer by numerically minimizing the emission rate of the lowest energy excited eigenstate, and then calculate the power output of the molecules with these dark states. We find that there are two distinct types of dark states depending on whether the monomers form homodimers, where energy splittings and dipole strengths are identical, or heterodimers, where there is some difference. Homodimers, which exploit destructive quantum interference, produce high power outputs but strong phonon couplings and perturbations from ideal geometries are extremely detrimental. Heterodimers, which are closer to the classical picture of a distinct donor and acceptor molecule, produce an intermediate power output that is relatively stable to these changes. The strong vibrational couplings typically found in organic molecules will suppress destructive interference and thus favor the dark-state enhancement offered by heterodimers.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab25ca</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coupling (molecular) ; Couplings ; dark state protection ; Dimers ; Dipoles ; Eigenvectors ; Electric power generation ; Interference ; light harvesting ; Organic chemistry ; organic solar cell ; Physics ; polaron transform ; quantum heat engine ; Radiative recombination</subject><ispartof>New journal of physics, 2019-06, Vol.21 (6), p.63025</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-9010a41a8fc928dbc37521dee754ba7b1ed76375be36a762c2e9405a81b5b2023</citedby><cites>FETCH-LOGICAL-c416t-9010a41a8fc928dbc37521dee754ba7b1ed76375be36a762c2e9405a81b5b2023</cites><orcidid>0000-0001-5142-9585 ; 0000-0002-7205-0483 ; 0000-0003-1232-9885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab25ca/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Rouse, D M</creatorcontrib><creatorcontrib>Gauger, E M</creatorcontrib><creatorcontrib>Lovett, B W</creatorcontrib><title>Optimal power generation using dark states in dimers strongly coupled to their environment</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Dark state protection has been proposed as a mechanism to increase the power output of light harvesting devices by reducing the rate of radiative recombination. Indeed many theoretical studies have reported increased power outputs in dimer systems which use quantum interference to generate dark states. These models have typically been restricted to particular geometries and to weakly coupled vibrational baths. Here we consider the experimentally-relevant strong vibrational coupling regime with no geometric restrictions on the dimer. We analyze how dark states can be formed in the dimer by numerically minimizing the emission rate of the lowest energy excited eigenstate, and then calculate the power output of the molecules with these dark states. We find that there are two distinct types of dark states depending on whether the monomers form homodimers, where energy splittings and dipole strengths are identical, or heterodimers, where there is some difference. Homodimers, which exploit destructive quantum interference, produce high power outputs but strong phonon couplings and perturbations from ideal geometries are extremely detrimental. Heterodimers, which are closer to the classical picture of a distinct donor and acceptor molecule, produce an intermediate power output that is relatively stable to these changes. The strong vibrational couplings typically found in organic molecules will suppress destructive interference and thus favor the dark-state enhancement offered by heterodimers.</description><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>dark state protection</subject><subject>Dimers</subject><subject>Dipoles</subject><subject>Eigenvectors</subject><subject>Electric power generation</subject><subject>Interference</subject><subject>light harvesting</subject><subject>Organic chemistry</subject><subject>organic solar cell</subject><subject>Physics</subject><subject>polaron transform</subject><subject>quantum heat engine</subject><subject>Radiative recombination</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1UT1PwzAQtRBIlMLOaImVUNv5ckZU8VGpUhdYWCx_XINLGgfbAfXfkxJUWJju9O7du7t3CF1SckMJ5zOaFmXCipTMpGK5lkdocoCO_-Sn6CyEDSGUcsYm6GXVRbuVDe7cJ3hcQwteRuta3Afb1thI_4ZDlBECti02dgs-DIB3bd3ssHZ914DB0eH4CtZjaD_sUNtCG8_RyVo2AS5-4hQ93989zR-T5ephMb9dJjqjRUwqQonMqORrXTFulE7LnFEDUOaZkqWiYMpiwBSkhSwLphlUGcklpypXjLB0ihajrnFyIzo_nON3wkkrvgHnayF9tLoBkVVGQ14oaZjKGKeVAZIWrIQccgK8GrSuRq3Ou_ceQhQb1_t2WF-wlLK05JSQgUVGlvYuBA_rw1RKxP4bYm-32Nstxm8MLddji3Xdr-a_9C9YzovO</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Rouse, D M</creator><creator>Gauger, E M</creator><creator>Lovett, B W</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid><orcidid>https://orcid.org/0000-0002-7205-0483</orcidid><orcidid>https://orcid.org/0000-0003-1232-9885</orcidid></search><sort><creationdate>20190601</creationdate><title>Optimal power generation using dark states in dimers strongly coupled to their environment</title><author>Rouse, D M ; Gauger, E M ; Lovett, B W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9010a41a8fc928dbc37521dee754ba7b1ed76375be36a762c2e9405a81b5b2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>dark state protection</topic><topic>Dimers</topic><topic>Dipoles</topic><topic>Eigenvectors</topic><topic>Electric power generation</topic><topic>Interference</topic><topic>light harvesting</topic><topic>Organic chemistry</topic><topic>organic solar cell</topic><topic>Physics</topic><topic>polaron transform</topic><topic>quantum heat engine</topic><topic>Radiative recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouse, D M</creatorcontrib><creatorcontrib>Gauger, E M</creatorcontrib><creatorcontrib>Lovett, B W</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouse, D M</au><au>Gauger, E M</au><au>Lovett, B W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal power generation using dark states in dimers strongly coupled to their environment</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>21</volume><issue>6</issue><spage>63025</spage><pages>63025-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Dark state protection has been proposed as a mechanism to increase the power output of light harvesting devices by reducing the rate of radiative recombination. Indeed many theoretical studies have reported increased power outputs in dimer systems which use quantum interference to generate dark states. These models have typically been restricted to particular geometries and to weakly coupled vibrational baths. Here we consider the experimentally-relevant strong vibrational coupling regime with no geometric restrictions on the dimer. We analyze how dark states can be formed in the dimer by numerically minimizing the emission rate of the lowest energy excited eigenstate, and then calculate the power output of the molecules with these dark states. We find that there are two distinct types of dark states depending on whether the monomers form homodimers, where energy splittings and dipole strengths are identical, or heterodimers, where there is some difference. Homodimers, which exploit destructive quantum interference, produce high power outputs but strong phonon couplings and perturbations from ideal geometries are extremely detrimental. Heterodimers, which are closer to the classical picture of a distinct donor and acceptor molecule, produce an intermediate power output that is relatively stable to these changes. The strong vibrational couplings typically found in organic molecules will suppress destructive interference and thus favor the dark-state enhancement offered by heterodimers.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab25ca</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid><orcidid>https://orcid.org/0000-0002-7205-0483</orcidid><orcidid>https://orcid.org/0000-0003-1232-9885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2019-06, Vol.21 (6), p.63025
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2312378100
source Institute of Physics Open Access Journal Titles; Directory of Open Access Journals; Institute of Physics IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Coupling (molecular)
Couplings
dark state protection
Dimers
Dipoles
Eigenvectors
Electric power generation
Interference
light harvesting
Organic chemistry
organic solar cell
Physics
polaron transform
quantum heat engine
Radiative recombination
title Optimal power generation using dark states in dimers strongly coupled to their environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20power%20generation%20using%20dark%20states%20in%20dimers%20strongly%20coupled%20to%20their%20environment&rft.jtitle=New%20journal%20of%20physics&rft.au=Rouse,%20D%20M&rft.date=2019-06-01&rft.volume=21&rft.issue=6&rft.spage=63025&rft.pages=63025-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab25ca&rft_dat=%3Cproquest_cross%3E2312378100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312378100&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_49dce56bad2b42819de03627e5e50e89&rfr_iscdi=true