Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices
Strongly interacting finite ensembles of dipolar bosons in commensurately filled one-dimensional optical lattices exhibit diverse quantum phases that are rich in physics. As the strength of the long-range boson-boson interaction increases, the system transitions across different phases: from a super...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2019-03, Vol.21 (3), p.33030 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 33030 |
container_title | New journal of physics |
container_volume | 21 |
creator | Chatterjee, Budhaditya Tsatsos, Marios C Lode, Axel U J |
description | Strongly interacting finite ensembles of dipolar bosons in commensurately filled one-dimensional optical lattices exhibit diverse quantum phases that are rich in physics. As the strength of the long-range boson-boson interaction increases, the system transitions across different phases: from a superfluid, through a Mott-insulator and a Tonks-Girardeau gas to a crystal state. The signature of these phases and their transitions can be unequivocally identified by an experimentally detectable order parameter, recently described in Phys. Rev. A 98 235301 (2018 [33]). Herein, we calculate the momentum distributions and the normalized Glauber correlation functions of dipolar bosons in a one-dimensional optical lattice in order to characterize all their phases. To understand the behavior of the correlations across the phase transitions, we first investigate the eigenfunctions and eigenvalues of the one-body reduced density matrix as a function of the dipolar interaction strength. We then analyze the real- and momentum-space Glauber correlation functions, thereby gaining a spatially and momentum-resolved insight into the coherence properties of these quantum phases. We find an intriguing structure of non-local correlations that, independently of other observables, reveal the phase transitions of the system. In particular, spatial localization and momentum delocalization accompany the formation of correlated islands in the density as interactions become stronger. Our study showcases that precise control of intersite correlations is possible through the manipulation of the depth of the lattice, while intrasite correlations can be influenced by changing the dipolar interaction strength. |
doi_str_mv | 10.1088/1367-2630/aafa93 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2312366631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_66792664a4774b9cafd0a5c7e05dad6d</doaj_id><sourcerecordid>2312366631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a6dceb4d59511637197e6d343ff0f3beaf4af2ca9f20c147cc73f3f50b35d3773</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhYMoOLbuXQZcCdZMXpV0LYfGcQYa3Og63MqjTZOulEla6X9vypLRWbjK5eQ754YchN5Sck3JdntDuVQdk5zcAHgY-DN09Sg9_2d-iV6VciSE0i1jVyjuUs4uQg1pKjh5XGpO0yFecJiqy2BqmA44Ta6z4eSm0jCI-Bxru0rRYhvmFCFj7352YyppwuVSqjuV5sdprsE0vMW3wZXX6IWHWNybP-cGfb37-GV33-0_f3rY3e47I3pSO5DWuFHYfugplVzRQTlpueDeE89HB16AZwYGz4ihQhmjuOe-JyPvLVeKb9DDmmsTHPWcwwnyRScI-reQ8kFDbi-KTkupBialAKGUGAcD3hLojXKkt2Db1g16v2Z9g_gk6v52rxeNMK4I5-IHbey7lZ1z-n52pepjOuf2YUUzThmXUvKFIitlciolO_8YS4leutRLWXopS69dNsuH1RLS_Dfzv_gv1JShwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312366631</pqid></control><display><type>article</type><title>Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chatterjee, Budhaditya ; Tsatsos, Marios C ; Lode, Axel U J</creator><creatorcontrib>Chatterjee, Budhaditya ; Tsatsos, Marios C ; Lode, Axel U J</creatorcontrib><description>Strongly interacting finite ensembles of dipolar bosons in commensurately filled one-dimensional optical lattices exhibit diverse quantum phases that are rich in physics. As the strength of the long-range boson-boson interaction increases, the system transitions across different phases: from a superfluid, through a Mott-insulator and a Tonks-Girardeau gas to a crystal state. The signature of these phases and their transitions can be unequivocally identified by an experimentally detectable order parameter, recently described in Phys. Rev. A 98 235301 (2018 [33]). Herein, we calculate the momentum distributions and the normalized Glauber correlation functions of dipolar bosons in a one-dimensional optical lattice in order to characterize all their phases. To understand the behavior of the correlations across the phase transitions, we first investigate the eigenfunctions and eigenvalues of the one-body reduced density matrix as a function of the dipolar interaction strength. We then analyze the real- and momentum-space Glauber correlation functions, thereby gaining a spatially and momentum-resolved insight into the coherence properties of these quantum phases. We find an intriguing structure of non-local correlations that, independently of other observables, reveal the phase transitions of the system. In particular, spatial localization and momentum delocalization accompany the formation of correlated islands in the density as interactions become stronger. Our study showcases that precise control of intersite correlations is possible through the manipulation of the depth of the lattice, while intrasite correlations can be influenced by changing the dipolar interaction strength.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aafa93</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Atomic and Molecular Clusters ; Bosons ; coherence properties ; Computational Physics ; Condensed Matter ; correlation functions ; Density ; dipolar boson ; Eigenvalues ; Eigenvectors ; Fluids ; Mathematical analysis ; Momentum ; optical lattice ; Optical lattices ; Order parameters ; Parameter identification ; Phase transitions ; Phases ; Physics ; Quantum Gases ; quantum phases ; Quantum Physics ; Superfluidity</subject><ispartof>New journal of physics, 2019-03, Vol.21 (3), p.33030</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a6dceb4d59511637197e6d343ff0f3beaf4af2ca9f20c147cc73f3f50b35d3773</citedby><cites>FETCH-LOGICAL-c450t-a6dceb4d59511637197e6d343ff0f3beaf4af2ca9f20c147cc73f3f50b35d3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aafa93/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,777,781,861,882,2096,27905,27906,38849,38871,53821,53848</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02370334$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Budhaditya</creatorcontrib><creatorcontrib>Tsatsos, Marios C</creatorcontrib><creatorcontrib>Lode, Axel U J</creatorcontrib><title>Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Strongly interacting finite ensembles of dipolar bosons in commensurately filled one-dimensional optical lattices exhibit diverse quantum phases that are rich in physics. As the strength of the long-range boson-boson interaction increases, the system transitions across different phases: from a superfluid, through a Mott-insulator and a Tonks-Girardeau gas to a crystal state. The signature of these phases and their transitions can be unequivocally identified by an experimentally detectable order parameter, recently described in Phys. Rev. A 98 235301 (2018 [33]). Herein, we calculate the momentum distributions and the normalized Glauber correlation functions of dipolar bosons in a one-dimensional optical lattice in order to characterize all their phases. To understand the behavior of the correlations across the phase transitions, we first investigate the eigenfunctions and eigenvalues of the one-body reduced density matrix as a function of the dipolar interaction strength. We then analyze the real- and momentum-space Glauber correlation functions, thereby gaining a spatially and momentum-resolved insight into the coherence properties of these quantum phases. We find an intriguing structure of non-local correlations that, independently of other observables, reveal the phase transitions of the system. In particular, spatial localization and momentum delocalization accompany the formation of correlated islands in the density as interactions become stronger. Our study showcases that precise control of intersite correlations is possible through the manipulation of the depth of the lattice, while intrasite correlations can be influenced by changing the dipolar interaction strength.</description><subject>Atomic and Molecular Clusters</subject><subject>Bosons</subject><subject>coherence properties</subject><subject>Computational Physics</subject><subject>Condensed Matter</subject><subject>correlation functions</subject><subject>Density</subject><subject>dipolar boson</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fluids</subject><subject>Mathematical analysis</subject><subject>Momentum</subject><subject>optical lattice</subject><subject>Optical lattices</subject><subject>Order parameters</subject><subject>Parameter identification</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>quantum phases</subject><subject>Quantum Physics</subject><subject>Superfluidity</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUuLFDEUhYMoOLbuXQZcCdZMXpV0LYfGcQYa3Og63MqjTZOulEla6X9vypLRWbjK5eQ754YchN5Sck3JdntDuVQdk5zcAHgY-DN09Sg9_2d-iV6VciSE0i1jVyjuUs4uQg1pKjh5XGpO0yFecJiqy2BqmA44Ta6z4eSm0jCI-Bxru0rRYhvmFCFj7352YyppwuVSqjuV5sdprsE0vMW3wZXX6IWHWNybP-cGfb37-GV33-0_f3rY3e47I3pSO5DWuFHYfugplVzRQTlpueDeE89HB16AZwYGz4ihQhmjuOe-JyPvLVeKb9DDmmsTHPWcwwnyRScI-reQ8kFDbi-KTkupBialAKGUGAcD3hLojXKkt2Db1g16v2Z9g_gk6v52rxeNMK4I5-IHbey7lZ1z-n52pepjOuf2YUUzThmXUvKFIitlciolO_8YS4leutRLWXopS69dNsuH1RLS_Dfzv_gv1JShwQ</recordid><startdate>20190328</startdate><enddate>20190328</enddate><creator>Chatterjee, Budhaditya</creator><creator>Tsatsos, Marios C</creator><creator>Lode, Axel U J</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>20190328</creationdate><title>Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices</title><author>Chatterjee, Budhaditya ; Tsatsos, Marios C ; Lode, Axel U J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a6dceb4d59511637197e6d343ff0f3beaf4af2ca9f20c147cc73f3f50b35d3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic and Molecular Clusters</topic><topic>Bosons</topic><topic>coherence properties</topic><topic>Computational Physics</topic><topic>Condensed Matter</topic><topic>correlation functions</topic><topic>Density</topic><topic>dipolar boson</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fluids</topic><topic>Mathematical analysis</topic><topic>Momentum</topic><topic>optical lattice</topic><topic>Optical lattices</topic><topic>Order parameters</topic><topic>Parameter identification</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>quantum phases</topic><topic>Quantum Physics</topic><topic>Superfluidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Budhaditya</creatorcontrib><creatorcontrib>Tsatsos, Marios C</creatorcontrib><creatorcontrib>Lode, Axel U J</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Budhaditya</au><au>Tsatsos, Marios C</au><au>Lode, Axel U J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-03-28</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>33030</spage><pages>33030-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Strongly interacting finite ensembles of dipolar bosons in commensurately filled one-dimensional optical lattices exhibit diverse quantum phases that are rich in physics. As the strength of the long-range boson-boson interaction increases, the system transitions across different phases: from a superfluid, through a Mott-insulator and a Tonks-Girardeau gas to a crystal state. The signature of these phases and their transitions can be unequivocally identified by an experimentally detectable order parameter, recently described in Phys. Rev. A 98 235301 (2018 [33]). Herein, we calculate the momentum distributions and the normalized Glauber correlation functions of dipolar bosons in a one-dimensional optical lattice in order to characterize all their phases. To understand the behavior of the correlations across the phase transitions, we first investigate the eigenfunctions and eigenvalues of the one-body reduced density matrix as a function of the dipolar interaction strength. We then analyze the real- and momentum-space Glauber correlation functions, thereby gaining a spatially and momentum-resolved insight into the coherence properties of these quantum phases. We find an intriguing structure of non-local correlations that, independently of other observables, reveal the phase transitions of the system. In particular, spatial localization and momentum delocalization accompany the formation of correlated islands in the density as interactions become stronger. Our study showcases that precise control of intersite correlations is possible through the manipulation of the depth of the lattice, while intrasite correlations can be influenced by changing the dipolar interaction strength.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aafa93</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2019-03, Vol.21 (3), p.33030 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2312366631 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Atomic and Molecular Clusters Bosons coherence properties Computational Physics Condensed Matter correlation functions Density dipolar boson Eigenvalues Eigenvectors Fluids Mathematical analysis Momentum optical lattice Optical lattices Order parameters Parameter identification Phase transitions Phases Physics Quantum Gases quantum phases Quantum Physics Superfluidity |
title | Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlations%20of%20strongly%20interacting%20one-dimensional%20ultracold%20dipolar%20few-boson%20systems%20in%20optical%20lattices&rft.jtitle=New%20journal%20of%20physics&rft.au=Chatterjee,%20Budhaditya&rft.date=2019-03-28&rft.volume=21&rft.issue=3&rft.spage=33030&rft.pages=33030-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aafa93&rft_dat=%3Cproquest_hal_p%3E2312366631%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312366631&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_66792664a4774b9cafd0a5c7e05dad6d&rfr_iscdi=true |