The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids

The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2019-11, Vol.31 (11)
Hauptverfasser: Evans, Jonathan D., Evans, Morgan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 31
creator Evans, Jonathan D.
Evans, Morgan L.
description The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.
doi_str_mv 10.1063/1.5129664
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2312036106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312036106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFKYmr-5nVlK0aoUdDGuQ5ofmzpmajKjduc7-IY-iS0tuhBc3bv4OAcOQseUDCgBfk4HOWUlgNhBPUqKMhsCwO76H5IMgNN9dJDSnBDCSwY9dFvNLLbvbeyMai1Ob7aucfLhsatV9O0SNw7fz1TIqpm34evjs1Ih2IhVMHjsbbJPXcKu7rxJh2jPqTrZo-3to4ery2p0nU3uxjeji0mmueAiU86CNWzImDJAtBCFdjAdAptaVuipK1RphCaFMFrlSqncQEkEzS0lXBBd8j462eQuYvPS2dTKedPFsKqUjFNGOKyX6KPTjdKxSSlaJxfRP6u4lJTINZBUbqda2bONTdq3qvVN-MGvTfyFcmHcf_hv8jfCcHgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312036106</pqid></control><display><type>article</type><title>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Evans, Jonathan D. ; Evans, Morgan L.</creator><creatorcontrib>Evans, Jonathan D. ; Evans, Morgan L.</creatorcontrib><description>The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5129664</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layers ; Contact stresses ; Die swell ; Eigenvalues ; Fluid dynamics ; Free surfaces ; Physics ; Polymers ; Slip ; Solvents ; Velocity distribution ; Viscoelastic fluids</subject><ispartof>Physics of fluids (1994), 2019-11, Vol.31 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</citedby><cites>FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Evans, Jonathan D.</creatorcontrib><creatorcontrib>Evans, Morgan L.</creatorcontrib><title>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</title><title>Physics of fluids (1994)</title><description>The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.</description><subject>Boundary layers</subject><subject>Contact stresses</subject><subject>Die swell</subject><subject>Eigenvalues</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Physics</subject><subject>Polymers</subject><subject>Slip</subject><subject>Solvents</subject><subject>Velocity distribution</subject><subject>Viscoelastic fluids</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFKYmr-5nVlK0aoUdDGuQ5ofmzpmajKjduc7-IY-iS0tuhBc3bv4OAcOQseUDCgBfk4HOWUlgNhBPUqKMhsCwO76H5IMgNN9dJDSnBDCSwY9dFvNLLbvbeyMai1Ob7aucfLhsatV9O0SNw7fz1TIqpm34evjs1Ih2IhVMHjsbbJPXcKu7rxJh2jPqTrZo-3to4ery2p0nU3uxjeji0mmueAiU86CNWzImDJAtBCFdjAdAptaVuipK1RphCaFMFrlSqncQEkEzS0lXBBd8j462eQuYvPS2dTKedPFsKqUjFNGOKyX6KPTjdKxSSlaJxfRP6u4lJTINZBUbqda2bONTdq3qvVN-MGvTfyFcmHcf_hv8jfCcHgQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Evans, Jonathan D.</creator><creator>Evans, Morgan L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</title><author>Evans, Jonathan D. ; Evans, Morgan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary layers</topic><topic>Contact stresses</topic><topic>Die swell</topic><topic>Eigenvalues</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Physics</topic><topic>Polymers</topic><topic>Slip</topic><topic>Solvents</topic><topic>Velocity distribution</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Jonathan D.</creatorcontrib><creatorcontrib>Evans, Morgan L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Jonathan D.</au><au>Evans, Morgan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>31</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5129664</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2019-11, Vol.31 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2312036106
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary layers
Contact stresses
Die swell
Eigenvalues
Fluid dynamics
Free surfaces
Physics
Polymers
Slip
Solvents
Velocity distribution
Viscoelastic fluids
title The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20extrudate%20swell%20singularity%20of%20Phan-Thien%E2%80%93Tanner%20and%20Giesekus%20fluids&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Evans,%20Jonathan%20D.&rft.date=2019-11-01&rft.volume=31&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5129664&rft_dat=%3Cproquest_scita%3E2312036106%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312036106&rft_id=info:pmid/&rfr_iscdi=true