The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids
The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2019-11, Vol.31 (11) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 31 |
creator | Evans, Jonathan D. Evans, Morgan L. |
description | The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid. |
doi_str_mv | 10.1063/1.5129664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2312036106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312036106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFKYmr-5nVlK0aoUdDGuQ5ofmzpmajKjduc7-IY-iS0tuhBc3bv4OAcOQseUDCgBfk4HOWUlgNhBPUqKMhsCwO76H5IMgNN9dJDSnBDCSwY9dFvNLLbvbeyMai1Ob7aucfLhsatV9O0SNw7fz1TIqpm34evjs1Ih2IhVMHjsbbJPXcKu7rxJh2jPqTrZo-3to4ery2p0nU3uxjeji0mmueAiU86CNWzImDJAtBCFdjAdAptaVuipK1RphCaFMFrlSqncQEkEzS0lXBBd8j462eQuYvPS2dTKedPFsKqUjFNGOKyX6KPTjdKxSSlaJxfRP6u4lJTINZBUbqda2bONTdq3qvVN-MGvTfyFcmHcf_hv8jfCcHgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312036106</pqid></control><display><type>article</type><title>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Evans, Jonathan D. ; Evans, Morgan L.</creator><creatorcontrib>Evans, Jonathan D. ; Evans, Morgan L.</creatorcontrib><description>The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5129664</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layers ; Contact stresses ; Die swell ; Eigenvalues ; Fluid dynamics ; Free surfaces ; Physics ; Polymers ; Slip ; Solvents ; Velocity distribution ; Viscoelastic fluids</subject><ispartof>Physics of fluids (1994), 2019-11, Vol.31 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</citedby><cites>FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Evans, Jonathan D.</creatorcontrib><creatorcontrib>Evans, Morgan L.</creatorcontrib><title>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</title><title>Physics of fluids (1994)</title><description>The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.</description><subject>Boundary layers</subject><subject>Contact stresses</subject><subject>Die swell</subject><subject>Eigenvalues</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Physics</subject><subject>Polymers</subject><subject>Slip</subject><subject>Solvents</subject><subject>Velocity distribution</subject><subject>Viscoelastic fluids</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFKYmr-5nVlK0aoUdDGuQ5ofmzpmajKjduc7-IY-iS0tuhBc3bv4OAcOQseUDCgBfk4HOWUlgNhBPUqKMhsCwO76H5IMgNN9dJDSnBDCSwY9dFvNLLbvbeyMai1Ob7aucfLhsatV9O0SNw7fz1TIqpm34evjs1Ih2IhVMHjsbbJPXcKu7rxJh2jPqTrZo-3to4ery2p0nU3uxjeji0mmueAiU86CNWzImDJAtBCFdjAdAptaVuipK1RphCaFMFrlSqncQEkEzS0lXBBd8j462eQuYvPS2dTKedPFsKqUjFNGOKyX6KPTjdKxSSlaJxfRP6u4lJTINZBUbqda2bONTdq3qvVN-MGvTfyFcmHcf_hv8jfCcHgQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Evans, Jonathan D.</creator><creator>Evans, Morgan L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</title><author>Evans, Jonathan D. ; Evans, Morgan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3434-afe6ed2722ad60c448cf6b762be28cbf8a9d4c084dca5aaa5d690415e10340c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary layers</topic><topic>Contact stresses</topic><topic>Die swell</topic><topic>Eigenvalues</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Physics</topic><topic>Polymers</topic><topic>Slip</topic><topic>Solvents</topic><topic>Velocity distribution</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Jonathan D.</creatorcontrib><creatorcontrib>Evans, Morgan L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Jonathan D.</au><au>Evans, Morgan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>31</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r−(1−λ0) and dominates the polymer stresses, which are like r−4(1−λ0)/(5+λ0) for PTT and r−(1−λ0)(3−λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5129664</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2019-11, Vol.31 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2312036106 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary layers Contact stresses Die swell Eigenvalues Fluid dynamics Free surfaces Physics Polymers Slip Solvents Velocity distribution Viscoelastic fluids |
title | The extrudate swell singularity of Phan-Thien–Tanner and Giesekus fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20extrudate%20swell%20singularity%20of%20Phan-Thien%E2%80%93Tanner%20and%20Giesekus%20fluids&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Evans,%20Jonathan%20D.&rft.date=2019-11-01&rft.volume=31&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5129664&rft_dat=%3Cproquest_scita%3E2312036106%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312036106&rft_id=info:pmid/&rfr_iscdi=true |