Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond

Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food analytical methods 2019-11, Vol.12 (11), p.2469-2473
Hauptverfasser: Cozzolino, D., Power, A., Chapman, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2473
container_issue 11
container_start_page 2469
container_title Food analytical methods
container_volume 12
creator Cozzolino, D.
Power, A.
Chapman, J.
description Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.
doi_str_mv 10.1007/s12161-019-01605-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311956375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311956375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA82pms8lujrVYLRQU7UHwELLZ2bKlTdZke-i_d9sVe_MwzAzz3mP4CLkFdg-M5Q8RUpCQMFB9SSYScUZGoLhMVC4_z_9mAZfkKsY1Y5JlkI7I19x1GNqAXeNW1LiKvmPrw3F7C42zTWs2dOq3rXfoOjpxZrOPTaSNozPvK_phG3QWT4dDxiPuvauuyUVtNhFvfvuYLGdPy-lLsnh9nk8ni8RyybskqxDKQtnCWlOqulIsZ9IIVoHFmpWWC2SVyTKBQqHMZS-py7QoIMMsg4KPyd0Q2wb_vcPY6bXfhf6dqFMOoITkuehV6aCywccYsNZtaLYm7DUwfWCoB4a6Z6iPDPXBxAdT7MVuheEU_Y_rBybVdVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311956375</pqid></control><display><type>article</type><title>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cozzolino, D. ; Power, A. ; Chapman, J.</creator><creatorcontrib>Cozzolino, D. ; Power, A. ; Chapman, J.</creatorcontrib><description>Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.</description><identifier>ISSN: 1936-9751</identifier><identifier>EISSN: 1936-976X</identifier><identifier>DOI: 10.1007/s12161-019-01605-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Data mining ; Food processing ; Food Science ; Microbiology ; Organic chemistry ; Principal components analysis ; Questions ; Students</subject><ispartof>Food analytical methods, 2019-11, Vol.12 (11), p.2469-2473</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</citedby><cites>FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</cites><orcidid>0000-0001-6247-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12161-019-01605-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12161-019-01605-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cozzolino, D.</creatorcontrib><creatorcontrib>Power, A.</creatorcontrib><creatorcontrib>Chapman, J.</creatorcontrib><title>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</title><title>Food analytical methods</title><addtitle>Food Anal. Methods</addtitle><description>Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Data mining</subject><subject>Food processing</subject><subject>Food Science</subject><subject>Microbiology</subject><subject>Organic chemistry</subject><subject>Principal components analysis</subject><subject>Questions</subject><subject>Students</subject><issn>1936-9751</issn><issn>1936-976X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPA82pms8lujrVYLRQU7UHwELLZ2bKlTdZke-i_d9sVe_MwzAzz3mP4CLkFdg-M5Q8RUpCQMFB9SSYScUZGoLhMVC4_z_9mAZfkKsY1Y5JlkI7I19x1GNqAXeNW1LiKvmPrw3F7C42zTWs2dOq3rXfoOjpxZrOPTaSNozPvK_phG3QWT4dDxiPuvauuyUVtNhFvfvuYLGdPy-lLsnh9nk8ni8RyybskqxDKQtnCWlOqulIsZ9IIVoHFmpWWC2SVyTKBQqHMZS-py7QoIMMsg4KPyd0Q2wb_vcPY6bXfhf6dqFMOoITkuehV6aCywccYsNZtaLYm7DUwfWCoB4a6Z6iPDPXBxAdT7MVuheEU_Y_rBybVdVM</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Cozzolino, D.</creator><creator>Power, A.</creator><creator>Chapman, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6247-8817</orcidid></search><sort><creationdate>20191101</creationdate><title>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</title><author>Cozzolino, D. ; Power, A. ; Chapman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Data mining</topic><topic>Food processing</topic><topic>Food Science</topic><topic>Microbiology</topic><topic>Organic chemistry</topic><topic>Principal components analysis</topic><topic>Questions</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cozzolino, D.</creatorcontrib><creatorcontrib>Power, A.</creatorcontrib><creatorcontrib>Chapman, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Food analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cozzolino, D.</au><au>Power, A.</au><au>Chapman, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</atitle><jtitle>Food analytical methods</jtitle><stitle>Food Anal. Methods</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>12</volume><issue>11</issue><spage>2469</spage><epage>2473</epage><pages>2469-2473</pages><issn>1936-9751</issn><eissn>1936-976X</eissn><abstract>Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12161-019-01605-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6247-8817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-9751
ispartof Food analytical methods, 2019-11, Vol.12 (11), p.2469-2473
issn 1936-9751
1936-976X
language eng
recordid cdi_proquest_journals_2311956375
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Data mining
Food processing
Food Science
Microbiology
Organic chemistry
Principal components analysis
Questions
Students
title Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpreting%20and%20Reporting%20Principal%20Component%20Analysis%20in%20Food%20Science%20Analysis%20and%20Beyond&rft.jtitle=Food%20analytical%20methods&rft.au=Cozzolino,%20D.&rft.date=2019-11-01&rft.volume=12&rft.issue=11&rft.spage=2469&rft.epage=2473&rft.pages=2469-2473&rft.issn=1936-9751&rft.eissn=1936-976X&rft_id=info:doi/10.1007/s12161-019-01605-5&rft_dat=%3Cproquest_cross%3E2311956375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311956375&rft_id=info:pmid/&rfr_iscdi=true