Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond
Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day...
Gespeichert in:
Veröffentlicht in: | Food analytical methods 2019-11, Vol.12 (11), p.2469-2473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2473 |
---|---|
container_issue | 11 |
container_start_page | 2469 |
container_title | Food analytical methods |
container_volume | 12 |
creator | Cozzolino, D. Power, A. Chapman, J. |
description | Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples. |
doi_str_mv | 10.1007/s12161-019-01605-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311956375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311956375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA82pms8lujrVYLRQU7UHwELLZ2bKlTdZke-i_d9sVe_MwzAzz3mP4CLkFdg-M5Q8RUpCQMFB9SSYScUZGoLhMVC4_z_9mAZfkKsY1Y5JlkI7I19x1GNqAXeNW1LiKvmPrw3F7C42zTWs2dOq3rXfoOjpxZrOPTaSNozPvK_phG3QWT4dDxiPuvauuyUVtNhFvfvuYLGdPy-lLsnh9nk8ni8RyybskqxDKQtnCWlOqulIsZ9IIVoHFmpWWC2SVyTKBQqHMZS-py7QoIMMsg4KPyd0Q2wb_vcPY6bXfhf6dqFMOoITkuehV6aCywccYsNZtaLYm7DUwfWCoB4a6Z6iPDPXBxAdT7MVuheEU_Y_rBybVdVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311956375</pqid></control><display><type>article</type><title>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cozzolino, D. ; Power, A. ; Chapman, J.</creator><creatorcontrib>Cozzolino, D. ; Power, A. ; Chapman, J.</creatorcontrib><description>Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.</description><identifier>ISSN: 1936-9751</identifier><identifier>EISSN: 1936-976X</identifier><identifier>DOI: 10.1007/s12161-019-01605-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Data mining ; Food processing ; Food Science ; Microbiology ; Organic chemistry ; Principal components analysis ; Questions ; Students</subject><ispartof>Food analytical methods, 2019-11, Vol.12 (11), p.2469-2473</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</citedby><cites>FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</cites><orcidid>0000-0001-6247-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12161-019-01605-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12161-019-01605-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cozzolino, D.</creatorcontrib><creatorcontrib>Power, A.</creatorcontrib><creatorcontrib>Chapman, J.</creatorcontrib><title>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</title><title>Food analytical methods</title><addtitle>Food Anal. Methods</addtitle><description>Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Data mining</subject><subject>Food processing</subject><subject>Food Science</subject><subject>Microbiology</subject><subject>Organic chemistry</subject><subject>Principal components analysis</subject><subject>Questions</subject><subject>Students</subject><issn>1936-9751</issn><issn>1936-976X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPA82pms8lujrVYLRQU7UHwELLZ2bKlTdZke-i_d9sVe_MwzAzz3mP4CLkFdg-M5Q8RUpCQMFB9SSYScUZGoLhMVC4_z_9mAZfkKsY1Y5JlkI7I19x1GNqAXeNW1LiKvmPrw3F7C42zTWs2dOq3rXfoOjpxZrOPTaSNozPvK_phG3QWT4dDxiPuvauuyUVtNhFvfvuYLGdPy-lLsnh9nk8ni8RyybskqxDKQtnCWlOqulIsZ9IIVoHFmpWWC2SVyTKBQqHMZS-py7QoIMMsg4KPyd0Q2wb_vcPY6bXfhf6dqFMOoITkuehV6aCywccYsNZtaLYm7DUwfWCoB4a6Z6iPDPXBxAdT7MVuheEU_Y_rBybVdVM</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Cozzolino, D.</creator><creator>Power, A.</creator><creator>Chapman, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6247-8817</orcidid></search><sort><creationdate>20191101</creationdate><title>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</title><author>Cozzolino, D. ; Power, A. ; Chapman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4de1b89c8ccab9fd90706a50d1cef0bc35e0da445e59e6769fdfb28814e44183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Data mining</topic><topic>Food processing</topic><topic>Food Science</topic><topic>Microbiology</topic><topic>Organic chemistry</topic><topic>Principal components analysis</topic><topic>Questions</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cozzolino, D.</creatorcontrib><creatorcontrib>Power, A.</creatorcontrib><creatorcontrib>Chapman, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Food analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cozzolino, D.</au><au>Power, A.</au><au>Chapman, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond</atitle><jtitle>Food analytical methods</jtitle><stitle>Food Anal. Methods</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>12</volume><issue>11</issue><spage>2469</spage><epage>2473</epage><pages>2469-2473</pages><issn>1936-9751</issn><eissn>1936-976X</eissn><abstract>Principal component analysis (PCA) is one of the most widely used data mining techniques in sciences and applied to a wide type of datasets (e.g. sensory, instrumental methods, chemical data). However, several questions and doubts on how to interpret and report the results are still asked every day from students and researchers. This brief communication is inspired in relation to those questions asked by colleagues and students. Please note that this article is a focus on the practical aspects, use and interpretation of the PCA to analyse multiple or varied data sets. In summary, the application of the PCA provides with two main elements, namely the scores and loadings. The scores provide with a location of the sample where the loadings indicate which variables are the most important to explain the trends in the grouping of samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12161-019-01605-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6247-8817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-9751 |
ispartof | Food analytical methods, 2019-11, Vol.12 (11), p.2469-2473 |
issn | 1936-9751 1936-976X |
language | eng |
recordid | cdi_proquest_journals_2311956375 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Data mining Food processing Food Science Microbiology Organic chemistry Principal components analysis Questions Students |
title | Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpreting%20and%20Reporting%20Principal%20Component%20Analysis%20in%20Food%20Science%20Analysis%20and%20Beyond&rft.jtitle=Food%20analytical%20methods&rft.au=Cozzolino,%20D.&rft.date=2019-11-01&rft.volume=12&rft.issue=11&rft.spage=2469&rft.epage=2473&rft.pages=2469-2473&rft.issn=1936-9751&rft.eissn=1936-976X&rft_id=info:doi/10.1007/s12161-019-01605-5&rft_dat=%3Cproquest_cross%3E2311956375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311956375&rft_id=info:pmid/&rfr_iscdi=true |