Auslander's defects over extriangulated categories: an application for the General Heart Construction

The notion of extriangulated category was introduced by Nakaoka and Palu giving a simultaneous generalization of exact categories and triangulated categories. Our first aim is to provide an extension to extriangulated categories of Auslander's formula: for some extriangulated category \(\mathca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
1. Verfasser: Ogawa, Yasuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ogawa, Yasuaki
description The notion of extriangulated category was introduced by Nakaoka and Palu giving a simultaneous generalization of exact categories and triangulated categories. Our first aim is to provide an extension to extriangulated categories of Auslander's formula: for some extriangulated category \(\mathcal{C}\), there exists a localization sequence \(\operatorname{\mathsf{def}}\mathcal{C}\to\operatorname{\mathsf{mod}}\mathcal{C}\to\operatorname{\mathsf{lex}}\mathcal{C}\), where \(\operatorname{\mathsf{lex}}\mathcal{C}\) denotes the full subcategory of finitely presented left exact functors and \(\operatorname{\mathsf{def}}\mathcal{C}\) the full subcategory of Auslander's defects. Moreover we provide a connection between the above localization sequence and the Gabriel-Quillen embedding theorem. As an application, we show that the general heart construction of a cotorsion pair \((\mathcal{U},\mathcal{V})\) in a triangulated category, which was provided by Abe and Nakaoka, is same as the construction of a localization sequence \(\operatorname{\mathsf{def}}\mathcal{U}\to\operatorname{\mathsf{mod}}\mathcal{U}\to\operatorname{\mathsf{lex}}\mathcal{U}\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2311807552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311807552</sourcerecordid><originalsourceid>FETCH-proquest_journals_23118075523</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_eNCilaAzmdIupPID2segT1OGGXtvJvr8DPqANufCuWchIqlUlpR7KVciZh7TNJWHQua5igSeAhttW6QdQ4sdNp7BvZAA354GbftgtMcWmpm9owH5CNqCniYzzG5wFjpH4B8IV7RI2kCNmjxUzrKn0HyTjVh22jDGv12L7eV8q-pkIvcMyP4-ukB2vu5SZVmZFnku1X_VB8IvR0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311807552</pqid></control><display><type>article</type><title>Auslander's defects over extriangulated categories: an application for the General Heart Construction</title><source>Freely Accessible Journals</source><creator>Ogawa, Yasuaki</creator><creatorcontrib>Ogawa, Yasuaki</creatorcontrib><description>The notion of extriangulated category was introduced by Nakaoka and Palu giving a simultaneous generalization of exact categories and triangulated categories. Our first aim is to provide an extension to extriangulated categories of Auslander's formula: for some extriangulated category \(\mathcal{C}\), there exists a localization sequence \(\operatorname{\mathsf{def}}\mathcal{C}\to\operatorname{\mathsf{mod}}\mathcal{C}\to\operatorname{\mathsf{lex}}\mathcal{C}\), where \(\operatorname{\mathsf{lex}}\mathcal{C}\) denotes the full subcategory of finitely presented left exact functors and \(\operatorname{\mathsf{def}}\mathcal{C}\) the full subcategory of Auslander's defects. Moreover we provide a connection between the above localization sequence and the Gabriel-Quillen embedding theorem. As an application, we show that the general heart construction of a cotorsion pair \((\mathcal{U},\mathcal{V})\) in a triangulated category, which was provided by Abe and Nakaoka, is same as the construction of a localization sequence \(\operatorname{\mathsf{def}}\mathcal{U}\to\operatorname{\mathsf{mod}}\mathcal{U}\to\operatorname{\mathsf{lex}}\mathcal{U}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Defects ; Localization</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ogawa, Yasuaki</creatorcontrib><title>Auslander's defects over extriangulated categories: an application for the General Heart Construction</title><title>arXiv.org</title><description>The notion of extriangulated category was introduced by Nakaoka and Palu giving a simultaneous generalization of exact categories and triangulated categories. Our first aim is to provide an extension to extriangulated categories of Auslander's formula: for some extriangulated category \(\mathcal{C}\), there exists a localization sequence \(\operatorname{\mathsf{def}}\mathcal{C}\to\operatorname{\mathsf{mod}}\mathcal{C}\to\operatorname{\mathsf{lex}}\mathcal{C}\), where \(\operatorname{\mathsf{lex}}\mathcal{C}\) denotes the full subcategory of finitely presented left exact functors and \(\operatorname{\mathsf{def}}\mathcal{C}\) the full subcategory of Auslander's defects. Moreover we provide a connection between the above localization sequence and the Gabriel-Quillen embedding theorem. As an application, we show that the general heart construction of a cotorsion pair \((\mathcal{U},\mathcal{V})\) in a triangulated category, which was provided by Abe and Nakaoka, is same as the construction of a localization sequence \(\operatorname{\mathsf{def}}\mathcal{U}\to\operatorname{\mathsf{mod}}\mathcal{U}\to\operatorname{\mathsf{lex}}\mathcal{U}\).</description><subject>Categories</subject><subject>Defects</subject><subject>Localization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgkAURYcgSMp_eNCilaAzmdIupPID2segT1OGGXtvJvr8DPqANufCuWchIqlUlpR7KVciZh7TNJWHQua5igSeAhttW6QdQ4sdNp7BvZAA354GbftgtMcWmpm9owH5CNqCniYzzG5wFjpH4B8IV7RI2kCNmjxUzrKn0HyTjVh22jDGv12L7eV8q-pkIvcMyP4-ukB2vu5SZVmZFnku1X_VB8IvR0o</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Ogawa, Yasuaki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220524</creationdate><title>Auslander's defects over extriangulated categories: an application for the General Heart Construction</title><author>Ogawa, Yasuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23118075523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Categories</topic><topic>Defects</topic><topic>Localization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ogawa, Yasuaki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogawa, Yasuaki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Auslander's defects over extriangulated categories: an application for the General Heart Construction</atitle><jtitle>arXiv.org</jtitle><date>2022-05-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The notion of extriangulated category was introduced by Nakaoka and Palu giving a simultaneous generalization of exact categories and triangulated categories. Our first aim is to provide an extension to extriangulated categories of Auslander's formula: for some extriangulated category \(\mathcal{C}\), there exists a localization sequence \(\operatorname{\mathsf{def}}\mathcal{C}\to\operatorname{\mathsf{mod}}\mathcal{C}\to\operatorname{\mathsf{lex}}\mathcal{C}\), where \(\operatorname{\mathsf{lex}}\mathcal{C}\) denotes the full subcategory of finitely presented left exact functors and \(\operatorname{\mathsf{def}}\mathcal{C}\) the full subcategory of Auslander's defects. Moreover we provide a connection between the above localization sequence and the Gabriel-Quillen embedding theorem. As an application, we show that the general heart construction of a cotorsion pair \((\mathcal{U},\mathcal{V})\) in a triangulated category, which was provided by Abe and Nakaoka, is same as the construction of a localization sequence \(\operatorname{\mathsf{def}}\mathcal{U}\to\operatorname{\mathsf{mod}}\mathcal{U}\to\operatorname{\mathsf{lex}}\mathcal{U}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2311807552
source Freely Accessible Journals
subjects Categories
Defects
Localization
title Auslander's defects over extriangulated categories: an application for the General Heart Construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Auslander's%20defects%20over%20extriangulated%20categories:%20an%20application%20for%20the%20General%20Heart%20Construction&rft.jtitle=arXiv.org&rft.au=Ogawa,%20Yasuaki&rft.date=2022-05-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2311807552%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311807552&rft_id=info:pmid/&rfr_iscdi=true