Electro-thermal excitation of parametric resonances in double-clamped micro beams
We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-11, Vol.115 (19) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 115 |
creator | Torteman, B. Kessler, Y. Liberzon, A. Krylov, S. |
description | We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of
≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements. |
doi_str_mv | 10.1063/1.5116524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311790577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311790577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdk0m-YopX6AIIKewyQ7wS27mzVJRf-9K616EDwNAw_z8RJyytmMs0pc8pnkvJLlfI9MOFOqEJwv9smEMSaKSkt-SI5SWo-tLIWYkMdViy7HUOQXjB20FN9dkyE3oafB0wEidJhj42jEFHroHSba9LQOG9ti4VroBqxp17gYqEXo0jE58NAmPNnVKXm-Xj0tb4v7h5u75dV94YQWuRBYzrUDV4KunbVzVF5VCym8Kj3XTHusrGKKSSulBSx15WsGYBdaSAaaiyk5284dYnjdYMpmHTaxH1eacnxaaSaVGtX5Vo33pRTRmyE2HcQPw5n5Ssxws0tstBdbm74j-MFvIf5CM9T-P_x38ifr9nn_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311790577</pqid></control><display><type>article</type><title>Electro-thermal excitation of parametric resonances in double-clamped micro beams</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Torteman, B. ; Kessler, Y. ; Liberzon, A. ; Krylov, S.</creator><creatorcontrib>Torteman, B. ; Kessler, Y. ; Liberzon, A. ; Krylov, S.</creatorcontrib><description>We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of
≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5116524</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuation ; Applied physics ; Axial stress ; Excitation ; Ion beams ; Light sources ; Logical elements ; Microbeams ; Numerical models ; Piezoelectricity ; Reactive ion etching ; Reduced order models ; Residual stress ; Signal processing ; Single crystals ; Thermal mismatch ; Timing devices</subject><ispartof>Applied physics letters, 2019-11, Vol.115 (19)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</citedby><cites>FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</cites><orcidid>0000-0002-4998-4747 ; 0000-0002-6882-4191 ; 0000-0003-3759-6808 ; 0000-0002-1934-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5116524$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Torteman, B.</creatorcontrib><creatorcontrib>Kessler, Y.</creatorcontrib><creatorcontrib>Liberzon, A.</creatorcontrib><creatorcontrib>Krylov, S.</creatorcontrib><title>Electro-thermal excitation of parametric resonances in double-clamped micro beams</title><title>Applied physics letters</title><description>We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of
≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.</description><subject>Actuation</subject><subject>Applied physics</subject><subject>Axial stress</subject><subject>Excitation</subject><subject>Ion beams</subject><subject>Light sources</subject><subject>Logical elements</subject><subject>Microbeams</subject><subject>Numerical models</subject><subject>Piezoelectricity</subject><subject>Reactive ion etching</subject><subject>Reduced order models</subject><subject>Residual stress</subject><subject>Signal processing</subject><subject>Single crystals</subject><subject>Thermal mismatch</subject><subject>Timing devices</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdk0m-YopX6AIIKewyQ7wS27mzVJRf-9K616EDwNAw_z8RJyytmMs0pc8pnkvJLlfI9MOFOqEJwv9smEMSaKSkt-SI5SWo-tLIWYkMdViy7HUOQXjB20FN9dkyE3oafB0wEidJhj42jEFHroHSba9LQOG9ti4VroBqxp17gYqEXo0jE58NAmPNnVKXm-Xj0tb4v7h5u75dV94YQWuRBYzrUDV4KunbVzVF5VCym8Kj3XTHusrGKKSSulBSx15WsGYBdaSAaaiyk5284dYnjdYMpmHTaxH1eacnxaaSaVGtX5Vo33pRTRmyE2HcQPw5n5Ssxws0tstBdbm74j-MFvIf5CM9T-P_x38ifr9nn_</recordid><startdate>20191104</startdate><enddate>20191104</enddate><creator>Torteman, B.</creator><creator>Kessler, Y.</creator><creator>Liberzon, A.</creator><creator>Krylov, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4998-4747</orcidid><orcidid>https://orcid.org/0000-0002-6882-4191</orcidid><orcidid>https://orcid.org/0000-0003-3759-6808</orcidid><orcidid>https://orcid.org/0000-0002-1934-1601</orcidid></search><sort><creationdate>20191104</creationdate><title>Electro-thermal excitation of parametric resonances in double-clamped micro beams</title><author>Torteman, B. ; Kessler, Y. ; Liberzon, A. ; Krylov, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Applied physics</topic><topic>Axial stress</topic><topic>Excitation</topic><topic>Ion beams</topic><topic>Light sources</topic><topic>Logical elements</topic><topic>Microbeams</topic><topic>Numerical models</topic><topic>Piezoelectricity</topic><topic>Reactive ion etching</topic><topic>Reduced order models</topic><topic>Residual stress</topic><topic>Signal processing</topic><topic>Single crystals</topic><topic>Thermal mismatch</topic><topic>Timing devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torteman, B.</creatorcontrib><creatorcontrib>Kessler, Y.</creatorcontrib><creatorcontrib>Liberzon, A.</creatorcontrib><creatorcontrib>Krylov, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torteman, B.</au><au>Kessler, Y.</au><au>Liberzon, A.</au><au>Krylov, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-thermal excitation of parametric resonances in double-clamped micro beams</atitle><jtitle>Applied physics letters</jtitle><date>2019-11-04</date><risdate>2019</risdate><volume>115</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of
≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5116524</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4998-4747</orcidid><orcidid>https://orcid.org/0000-0002-6882-4191</orcidid><orcidid>https://orcid.org/0000-0003-3759-6808</orcidid><orcidid>https://orcid.org/0000-0002-1934-1601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-11, Vol.115 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2311790577 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Actuation Applied physics Axial stress Excitation Ion beams Light sources Logical elements Microbeams Numerical models Piezoelectricity Reactive ion etching Reduced order models Residual stress Signal processing Single crystals Thermal mismatch Timing devices |
title | Electro-thermal excitation of parametric resonances in double-clamped micro beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-thermal%20excitation%20of%20parametric%20resonances%20in%20double-clamped%20micro%20beams&rft.jtitle=Applied%20physics%20letters&rft.au=Torteman,%20B.&rft.date=2019-11-04&rft.volume=115&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5116524&rft_dat=%3Cproquest_cross%3E2311790577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311790577&rft_id=info:pmid/&rfr_iscdi=true |