Electro-thermal excitation of parametric resonances in double-clamped micro beams

We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-11, Vol.115 (19)
Hauptverfasser: Torteman, B., Kessler, Y., Liberzon, A., Krylov, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 115
creator Torteman, B.
Kessler, Y.
Liberzon, A.
Krylov, S.
description We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of ≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.
doi_str_mv 10.1063/1.5116524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311790577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311790577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdk0m-YopX6AIIKewyQ7wS27mzVJRf-9K616EDwNAw_z8RJyytmMs0pc8pnkvJLlfI9MOFOqEJwv9smEMSaKSkt-SI5SWo-tLIWYkMdViy7HUOQXjB20FN9dkyE3oafB0wEidJhj42jEFHroHSba9LQOG9ti4VroBqxp17gYqEXo0jE58NAmPNnVKXm-Xj0tb4v7h5u75dV94YQWuRBYzrUDV4KunbVzVF5VCym8Kj3XTHusrGKKSSulBSx15WsGYBdaSAaaiyk5284dYnjdYMpmHTaxH1eacnxaaSaVGtX5Vo33pRTRmyE2HcQPw5n5Ssxws0tstBdbm74j-MFvIf5CM9T-P_x38ifr9nn_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311790577</pqid></control><display><type>article</type><title>Electro-thermal excitation of parametric resonances in double-clamped micro beams</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Torteman, B. ; Kessler, Y. ; Liberzon, A. ; Krylov, S.</creator><creatorcontrib>Torteman, B. ; Kessler, Y. ; Liberzon, A. ; Krylov, S.</creatorcontrib><description>We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of ≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5116524</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuation ; Applied physics ; Axial stress ; Excitation ; Ion beams ; Light sources ; Logical elements ; Microbeams ; Numerical models ; Piezoelectricity ; Reactive ion etching ; Reduced order models ; Residual stress ; Signal processing ; Single crystals ; Thermal mismatch ; Timing devices</subject><ispartof>Applied physics letters, 2019-11, Vol.115 (19)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</citedby><cites>FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</cites><orcidid>0000-0002-4998-4747 ; 0000-0002-6882-4191 ; 0000-0003-3759-6808 ; 0000-0002-1934-1601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5116524$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Torteman, B.</creatorcontrib><creatorcontrib>Kessler, Y.</creatorcontrib><creatorcontrib>Liberzon, A.</creatorcontrib><creatorcontrib>Krylov, S.</creatorcontrib><title>Electro-thermal excitation of parametric resonances in double-clamped micro beams</title><title>Applied physics letters</title><description>We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of ≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.</description><subject>Actuation</subject><subject>Applied physics</subject><subject>Axial stress</subject><subject>Excitation</subject><subject>Ion beams</subject><subject>Light sources</subject><subject>Logical elements</subject><subject>Microbeams</subject><subject>Numerical models</subject><subject>Piezoelectricity</subject><subject>Reactive ion etching</subject><subject>Reduced order models</subject><subject>Residual stress</subject><subject>Signal processing</subject><subject>Single crystals</subject><subject>Thermal mismatch</subject><subject>Timing devices</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNdk0m-YopX6AIIKewyQ7wS27mzVJRf-9K616EDwNAw_z8RJyytmMs0pc8pnkvJLlfI9MOFOqEJwv9smEMSaKSkt-SI5SWo-tLIWYkMdViy7HUOQXjB20FN9dkyE3oafB0wEidJhj42jEFHroHSba9LQOG9ti4VroBqxp17gYqEXo0jE58NAmPNnVKXm-Xj0tb4v7h5u75dV94YQWuRBYzrUDV4KunbVzVF5VCym8Kj3XTHusrGKKSSulBSx15WsGYBdaSAaaiyk5284dYnjdYMpmHTaxH1eacnxaaSaVGtX5Vo33pRTRmyE2HcQPw5n5Ssxws0tstBdbm74j-MFvIf5CM9T-P_x38ifr9nn_</recordid><startdate>20191104</startdate><enddate>20191104</enddate><creator>Torteman, B.</creator><creator>Kessler, Y.</creator><creator>Liberzon, A.</creator><creator>Krylov, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4998-4747</orcidid><orcidid>https://orcid.org/0000-0002-6882-4191</orcidid><orcidid>https://orcid.org/0000-0003-3759-6808</orcidid><orcidid>https://orcid.org/0000-0002-1934-1601</orcidid></search><sort><creationdate>20191104</creationdate><title>Electro-thermal excitation of parametric resonances in double-clamped micro beams</title><author>Torteman, B. ; Kessler, Y. ; Liberzon, A. ; Krylov, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3e249cac2a9dcbb4e7f76853f72f1909fe6b70705b55bae296fd0aab89350a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Applied physics</topic><topic>Axial stress</topic><topic>Excitation</topic><topic>Ion beams</topic><topic>Light sources</topic><topic>Logical elements</topic><topic>Microbeams</topic><topic>Numerical models</topic><topic>Piezoelectricity</topic><topic>Reactive ion etching</topic><topic>Reduced order models</topic><topic>Residual stress</topic><topic>Signal processing</topic><topic>Single crystals</topic><topic>Thermal mismatch</topic><topic>Timing devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torteman, B.</creatorcontrib><creatorcontrib>Kessler, Y.</creatorcontrib><creatorcontrib>Liberzon, A.</creatorcontrib><creatorcontrib>Krylov, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torteman, B.</au><au>Kessler, Y.</au><au>Liberzon, A.</au><au>Krylov, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-thermal excitation of parametric resonances in double-clamped micro beams</atitle><jtitle>Applied physics letters</jtitle><date>2019-11-04</date><risdate>2019</risdate><volume>115</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on a simple yet efficient approach allowing direct electrothermal excitation of parametric resonance (PR) in double-clamped flexible nano- and microscale beams. The application of a time-harmonic voltage between the beam's ends leads to the electric current and Joule's heating of the entire beam, which induces a time-periodic axial stress and results in excitation of the structure lateral vibrations through the PR mechanism. The proposed approach has an advantage, simplifying fabrication and integration and reducing the influence of residual stress, and thermal mismatch, unlike conventional piezoelectric, photothermal, or electrostatic actuation approaches, which require additional piezoelectric layers, light sources, or electrodes in the proximity of a vibrating beam. Single crystal silicon, nominally 500 μm long, 30 μm wide, and 5 μm thick beams were fabricated by deep reactive ion etching and operated at a pressure of ≈1.9 mTorr. The experimental results, consistent with the reduced order and numerical model predictions, demonstrate the feasibility of the suggested excitation scenario, which could be implemented in resonant sensors, timing devices, signal processing, and micro and nanomechanical logical elements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5116524</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4998-4747</orcidid><orcidid>https://orcid.org/0000-0002-6882-4191</orcidid><orcidid>https://orcid.org/0000-0003-3759-6808</orcidid><orcidid>https://orcid.org/0000-0002-1934-1601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-11, Vol.115 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2311790577
source AIP Journals Complete; Alma/SFX Local Collection
subjects Actuation
Applied physics
Axial stress
Excitation
Ion beams
Light sources
Logical elements
Microbeams
Numerical models
Piezoelectricity
Reactive ion etching
Reduced order models
Residual stress
Signal processing
Single crystals
Thermal mismatch
Timing devices
title Electro-thermal excitation of parametric resonances in double-clamped micro beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-thermal%20excitation%20of%20parametric%20resonances%20in%20double-clamped%20micro%20beams&rft.jtitle=Applied%20physics%20letters&rft.au=Torteman,%20B.&rft.date=2019-11-04&rft.volume=115&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5116524&rft_dat=%3Cproquest_cross%3E2311790577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311790577&rft_id=info:pmid/&rfr_iscdi=true