Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials
In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence...
Gespeichert in:
Veröffentlicht in: | Powder technology 2019-09, Vol.354, p.158-164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | |
container_start_page | 158 |
container_title | Powder technology |
container_volume | 354 |
creator | Dong, Hongxu Gardner, Eiche Barron, Alexandra Fay Koenig, Gary M. |
description | In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials.
Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted]
•Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation. |
doi_str_mv | 10.1016/j.powtec.2019.05.082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311521522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591019304310</els_id><sourcerecordid>2311521522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gYeA510n2e5HLoIUv6DgRcFbyGYnmtLdrEla239v1noWBuYwzzsz70vIFYOcAatuVvnoviPqnAMTOZQ5NPyIzFhTF1nBm_djMgMoeFYKBqfkLIQVAFQFgxnZ3Y2j8jhEqnS0WxWtGygO6D_21Bnab9bRatePbpiY6NUQ7C_TY1Rr6nZqrSIGGh0dvWuRhv0QPzHYMMlbFSP6fRqh3vjgPO0T7a1ahwtyYlLDy79-Tt4e7l8XT9ny5fF5cbfM9JzVMVNNzU1RdjXouWnbCivRtDyNGiU4V5UQoIwoq3rODC86IwxgWwvAGpqy47w4J9eHvem9rw2GKFdu44d0UvKCsZKnmqj5gdLeheDRyNHbXvm9ZCCnjOVKHjKWU8YSSpkyTrLbgwyTg61FL4O2OGjsbHIcZefs_wt-AMruilI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311521522</pqid></control><display><type>article</type><title>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dong, Hongxu ; Gardner, Eiche ; Barron, Alexandra Fay ; Koenig, Gary M.</creator><creatorcontrib>Dong, Hongxu ; Gardner, Eiche ; Barron, Alexandra Fay ; Koenig, Gary M.</creatorcontrib><description>In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials.
Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted]
•Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2019.05.082</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation energy ; Cathode materials ; Coprecipitation ; Crystal structure ; Crystallization ; Energy storage ; Lithium-ion battery ; Metal particles ; Metals ; Nucleation ; Organic chemistry ; Oxalates ; Oxalic acid ; Precipitates ; Precursors ; Time dependence ; Transition metals ; X-ray diffraction</subject><ispartof>Powder technology, 2019-09, Vol.354, p.158-164</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</citedby><cites>FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</cites><orcidid>0000-0002-7172-7819 ; 0000-0003-4760-3979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2019.05.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dong, Hongxu</creatorcontrib><creatorcontrib>Gardner, Eiche</creatorcontrib><creatorcontrib>Barron, Alexandra Fay</creatorcontrib><creatorcontrib>Koenig, Gary M.</creatorcontrib><title>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</title><title>Powder technology</title><description>In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials.
Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted]
•Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.</description><subject>Activation energy</subject><subject>Cathode materials</subject><subject>Coprecipitation</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Energy storage</subject><subject>Lithium-ion battery</subject><subject>Metal particles</subject><subject>Metals</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Oxalates</subject><subject>Oxalic acid</subject><subject>Precipitates</subject><subject>Precursors</subject><subject>Time dependence</subject><subject>Transition metals</subject><subject>X-ray diffraction</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gYeA510n2e5HLoIUv6DgRcFbyGYnmtLdrEla239v1noWBuYwzzsz70vIFYOcAatuVvnoviPqnAMTOZQ5NPyIzFhTF1nBm_djMgMoeFYKBqfkLIQVAFQFgxnZ3Y2j8jhEqnS0WxWtGygO6D_21Bnab9bRatePbpiY6NUQ7C_TY1Rr6nZqrSIGGh0dvWuRhv0QPzHYMMlbFSP6fRqh3vjgPO0T7a1ahwtyYlLDy79-Tt4e7l8XT9ny5fF5cbfM9JzVMVNNzU1RdjXouWnbCivRtDyNGiU4V5UQoIwoq3rODC86IwxgWwvAGpqy47w4J9eHvem9rw2GKFdu44d0UvKCsZKnmqj5gdLeheDRyNHbXvm9ZCCnjOVKHjKWU8YSSpkyTrLbgwyTg61FL4O2OGjsbHIcZefs_wt-AMruilI</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Dong, Hongxu</creator><creator>Gardner, Eiche</creator><creator>Barron, Alexandra Fay</creator><creator>Koenig, Gary M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7172-7819</orcidid><orcidid>https://orcid.org/0000-0003-4760-3979</orcidid></search><sort><creationdate>20190901</creationdate><title>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</title><author>Dong, Hongxu ; Gardner, Eiche ; Barron, Alexandra Fay ; Koenig, Gary M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Cathode materials</topic><topic>Coprecipitation</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Energy storage</topic><topic>Lithium-ion battery</topic><topic>Metal particles</topic><topic>Metals</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Oxalates</topic><topic>Oxalic acid</topic><topic>Precipitates</topic><topic>Precursors</topic><topic>Time dependence</topic><topic>Transition metals</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Hongxu</creatorcontrib><creatorcontrib>Gardner, Eiche</creatorcontrib><creatorcontrib>Barron, Alexandra Fay</creatorcontrib><creatorcontrib>Koenig, Gary M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Hongxu</au><au>Gardner, Eiche</au><au>Barron, Alexandra Fay</au><au>Koenig, Gary M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</atitle><jtitle>Powder technology</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>354</volume><spage>158</spage><epage>164</epage><pages>158-164</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials.
Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted]
•Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2019.05.082</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7172-7819</orcidid><orcidid>https://orcid.org/0000-0003-4760-3979</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2019-09, Vol.354, p.158-164 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_proquest_journals_2311521522 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Activation energy Cathode materials Coprecipitation Crystal structure Crystallization Energy storage Lithium-ion battery Metal particles Metals Nucleation Organic chemistry Oxalates Oxalic acid Precipitates Precursors Time dependence Transition metals X-ray diffraction |
title | Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apparent%20activation%20energy%20of%20multicomponent%20transition%20metal%20oxalates%20to%20probe%20synthesis%20of%20battery%20precursor%20materials&rft.jtitle=Powder%20technology&rft.au=Dong,%20Hongxu&rft.date=2019-09-01&rft.volume=354&rft.spage=158&rft.epage=164&rft.pages=158-164&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2019.05.082&rft_dat=%3Cproquest_cross%3E2311521522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311521522&rft_id=info:pmid/&rft_els_id=S0032591019304310&rfr_iscdi=true |