Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials

In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2019-09, Vol.354, p.158-164
Hauptverfasser: Dong, Hongxu, Gardner, Eiche, Barron, Alexandra Fay, Koenig, Gary M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue
container_start_page 158
container_title Powder technology
container_volume 354
creator Dong, Hongxu
Gardner, Eiche
Barron, Alexandra Fay
Koenig, Gary M.
description In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials. Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted] •Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.
doi_str_mv 10.1016/j.powtec.2019.05.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311521522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591019304310</els_id><sourcerecordid>2311521522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gYeA510n2e5HLoIUv6DgRcFbyGYnmtLdrEla239v1noWBuYwzzsz70vIFYOcAatuVvnoviPqnAMTOZQ5NPyIzFhTF1nBm_djMgMoeFYKBqfkLIQVAFQFgxnZ3Y2j8jhEqnS0WxWtGygO6D_21Bnab9bRatePbpiY6NUQ7C_TY1Rr6nZqrSIGGh0dvWuRhv0QPzHYMMlbFSP6fRqh3vjgPO0T7a1ahwtyYlLDy79-Tt4e7l8XT9ny5fF5cbfM9JzVMVNNzU1RdjXouWnbCivRtDyNGiU4V5UQoIwoq3rODC86IwxgWwvAGpqy47w4J9eHvem9rw2GKFdu44d0UvKCsZKnmqj5gdLeheDRyNHbXvm9ZCCnjOVKHjKWU8YSSpkyTrLbgwyTg61FL4O2OGjsbHIcZefs_wt-AMruilI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311521522</pqid></control><display><type>article</type><title>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dong, Hongxu ; Gardner, Eiche ; Barron, Alexandra Fay ; Koenig, Gary M.</creator><creatorcontrib>Dong, Hongxu ; Gardner, Eiche ; Barron, Alexandra Fay ; Koenig, Gary M.</creatorcontrib><description>In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials. Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted] •Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2019.05.082</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation energy ; Cathode materials ; Coprecipitation ; Crystal structure ; Crystallization ; Energy storage ; Lithium-ion battery ; Metal particles ; Metals ; Nucleation ; Organic chemistry ; Oxalates ; Oxalic acid ; Precipitates ; Precursors ; Time dependence ; Transition metals ; X-ray diffraction</subject><ispartof>Powder technology, 2019-09, Vol.354, p.158-164</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</citedby><cites>FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</cites><orcidid>0000-0002-7172-7819 ; 0000-0003-4760-3979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2019.05.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dong, Hongxu</creatorcontrib><creatorcontrib>Gardner, Eiche</creatorcontrib><creatorcontrib>Barron, Alexandra Fay</creatorcontrib><creatorcontrib>Koenig, Gary M.</creatorcontrib><title>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</title><title>Powder technology</title><description>In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials. Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted] •Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.</description><subject>Activation energy</subject><subject>Cathode materials</subject><subject>Coprecipitation</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Energy storage</subject><subject>Lithium-ion battery</subject><subject>Metal particles</subject><subject>Metals</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Oxalates</subject><subject>Oxalic acid</subject><subject>Precipitates</subject><subject>Precursors</subject><subject>Time dependence</subject><subject>Transition metals</subject><subject>X-ray diffraction</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gYeA510n2e5HLoIUv6DgRcFbyGYnmtLdrEla239v1noWBuYwzzsz70vIFYOcAatuVvnoviPqnAMTOZQ5NPyIzFhTF1nBm_djMgMoeFYKBqfkLIQVAFQFgxnZ3Y2j8jhEqnS0WxWtGygO6D_21Bnab9bRatePbpiY6NUQ7C_TY1Rr6nZqrSIGGh0dvWuRhv0QPzHYMMlbFSP6fRqh3vjgPO0T7a1ahwtyYlLDy79-Tt4e7l8XT9ny5fF5cbfM9JzVMVNNzU1RdjXouWnbCivRtDyNGiU4V5UQoIwoq3rODC86IwxgWwvAGpqy47w4J9eHvem9rw2GKFdu44d0UvKCsZKnmqj5gdLeheDRyNHbXvm9ZCCnjOVKHjKWU8YSSpkyTrLbgwyTg61FL4O2OGjsbHIcZefs_wt-AMruilI</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Dong, Hongxu</creator><creator>Gardner, Eiche</creator><creator>Barron, Alexandra Fay</creator><creator>Koenig, Gary M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7172-7819</orcidid><orcidid>https://orcid.org/0000-0003-4760-3979</orcidid></search><sort><creationdate>20190901</creationdate><title>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</title><author>Dong, Hongxu ; Gardner, Eiche ; Barron, Alexandra Fay ; Koenig, Gary M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-a872f35d70c4fbb6e698b24178a922a6990af956741f23df9f0eb790e7085d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Cathode materials</topic><topic>Coprecipitation</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Energy storage</topic><topic>Lithium-ion battery</topic><topic>Metal particles</topic><topic>Metals</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Oxalates</topic><topic>Oxalic acid</topic><topic>Precipitates</topic><topic>Precursors</topic><topic>Time dependence</topic><topic>Transition metals</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Hongxu</creatorcontrib><creatorcontrib>Gardner, Eiche</creatorcontrib><creatorcontrib>Barron, Alexandra Fay</creatorcontrib><creatorcontrib>Koenig, Gary M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Hongxu</au><au>Gardner, Eiche</au><au>Barron, Alexandra Fay</au><au>Koenig, Gary M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials</atitle><jtitle>Powder technology</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>354</volume><spage>158</spage><epage>164</epage><pages>158-164</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>In this study the apparent activation energy of pure and multicomponent transition metal oxalate coprecipitation reactions were experimentally measured via time dependent extinction of light passing through the reaction solution. These measurements provide a quantitative descriptor of the influence of the relative transition metal composition on the nucleation and growth processes of the precipitates. The resulting crystal structures of the synthesized precursors were also determined and put into the context of the measured coprecipitation apparent activation energies, revealing that the apparent activation energy may indicate impurity or secondary phase formation before it was detectable with X-ray diffraction. This paper is the first report of using apparent activation energies to investigate battery precursor coprecipitation reactions, and these methods should be extendable to chemistry for coprecipitation of many multicomponent transition metal particles which have applications in multiple fields including energy storage materials. Coprecipitation induction periods were measured quantitatively by tracking extinction of light as a function of time at different temperatures. Calculated apparent activation energies from the induction times were then used to provide insights into the synthesis process for multicomponent particles commonly used as battery material precursors. [Display omitted] •Activation energy study conducted on metal oxalate coprecipitation reactions.•Apparent activation energies measured via time dependent extinction of light.•New phase formation possibly indicated by local minimum of activation energies.•Activation energy was quantitative descriptor for multicomponent coprecipitation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2019.05.082</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7172-7819</orcidid><orcidid>https://orcid.org/0000-0003-4760-3979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2019-09, Vol.354, p.158-164
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2311521522
source Elsevier ScienceDirect Journals Complete
subjects Activation energy
Cathode materials
Coprecipitation
Crystal structure
Crystallization
Energy storage
Lithium-ion battery
Metal particles
Metals
Nucleation
Organic chemistry
Oxalates
Oxalic acid
Precipitates
Precursors
Time dependence
Transition metals
X-ray diffraction
title Apparent activation energy of multicomponent transition metal oxalates to probe synthesis of battery precursor materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apparent%20activation%20energy%20of%20multicomponent%20transition%20metal%20oxalates%20to%20probe%20synthesis%20of%20battery%20precursor%20materials&rft.jtitle=Powder%20technology&rft.au=Dong,%20Hongxu&rft.date=2019-09-01&rft.volume=354&rft.spage=158&rft.epage=164&rft.pages=158-164&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2019.05.082&rft_dat=%3Cproquest_cross%3E2311521522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311521522&rft_id=info:pmid/&rft_els_id=S0032591019304310&rfr_iscdi=true