Rootkit inside GPU Kernel Execution
We propose a rootkit installation method inside a GPU kernel execution process which works through GPU context manipulation. In GPU-based applications such as deep learning computations and cryptographic operations, the proposed method uses the feature by which the execution flow of the GPU kernel o...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2019/11/01, Vol.E102.D(11), pp.2261-2264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2264 |
---|---|
container_issue | 11 |
container_start_page | 2261 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E102.D |
creator | KWON, Ohmin KWON, Hyun YOON, Hyunsoo |
description | We propose a rootkit installation method inside a GPU kernel execution process which works through GPU context manipulation. In GPU-based applications such as deep learning computations and cryptographic operations, the proposed method uses the feature by which the execution flow of the GPU kernel obeys the GPU context information in GPU memory. The proposed method consists of two key ideas. The first is GPU code manipulation, which is able to hijack the execution flow of the original GPU kernel to execute an injected payload without affecting the original GPU computation result. The second is a self-page-table update execution during which the GPU kernel updates its page table to access any location in system memory. After the installation, the malicious payload is executed only in the GPU kernel, and any no evidence remains in system memory. Thus, it cannot be detected by conventional rootkit detection methods. |
doi_str_mv | 10.1587/transinf.2019EDL8104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311259669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311259669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-55453aa73140898e872cd2984bb033195cfafab75ee312ac41bcea54100ee7d93</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiYj-AxeTsB7s68e0XRoY0UiiUVk3nfJGB3EG25LovxeCoKt3F-fcl1xCLoEOQWp1lYJrY9PWQ0bBlOOpBiqOSA-UkDnwAo5Jjxooci05OyVnMS4oBc1A9sjgqevSe5OyZtMwx2zyOMvuMbS4zMov9OvUdO05OandMuLF7-2T2U35MrrNpw-Tu9H1NPcSVMqlFJI7pzgIqo1GrZifM6NFVVHOwUhfu9pVSiJyYM4LqDw6KYBSRDU3vE8Gu95V6D7XGJNddOvQbl5axgGYNEWxpcSO8qGLMWBtV6H5cOHbArXbOex-Dvtvjo32vNMWMblXPEgupMYv8U8qgTI7tgD79K_lQPs3Fyy2_AfuVnCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311259669</pqid></control><display><type>article</type><title>Rootkit inside GPU Kernel Execution</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>KWON, Ohmin ; KWON, Hyun ; YOON, Hyunsoo</creator><creatorcontrib>KWON, Ohmin ; KWON, Hyun ; YOON, Hyunsoo</creatorcontrib><description>We propose a rootkit installation method inside a GPU kernel execution process which works through GPU context manipulation. In GPU-based applications such as deep learning computations and cryptographic operations, the proposed method uses the feature by which the execution flow of the GPU kernel obeys the GPU context information in GPU memory. The proposed method consists of two key ideas. The first is GPU code manipulation, which is able to hijack the execution flow of the original GPU kernel to execute an injected payload without affecting the original GPU computation result. The second is a self-page-table update execution during which the GPU kernel updates its page table to access any location in system memory. After the installation, the malicious payload is executed only in the GPU kernel, and any no evidence remains in system memory. Thus, it cannot be detected by conventional rootkit detection methods.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2019EDL8104</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Cryptography ; Graphics boards ; graphics processing unit ; Kernels ; Machine learning ; rootkit ; security</subject><ispartof>IEICE Transactions on Information and Systems, 2019/11/01, Vol.E102.D(11), pp.2261-2264</ispartof><rights>2019 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c517t-55453aa73140898e872cd2984bb033195cfafab75ee312ac41bcea54100ee7d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>KWON, Ohmin</creatorcontrib><creatorcontrib>KWON, Hyun</creatorcontrib><creatorcontrib>YOON, Hyunsoo</creatorcontrib><title>Rootkit inside GPU Kernel Execution</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>We propose a rootkit installation method inside a GPU kernel execution process which works through GPU context manipulation. In GPU-based applications such as deep learning computations and cryptographic operations, the proposed method uses the feature by which the execution flow of the GPU kernel obeys the GPU context information in GPU memory. The proposed method consists of two key ideas. The first is GPU code manipulation, which is able to hijack the execution flow of the original GPU kernel to execute an injected payload without affecting the original GPU computation result. The second is a self-page-table update execution during which the GPU kernel updates its page table to access any location in system memory. After the installation, the malicious payload is executed only in the GPU kernel, and any no evidence remains in system memory. Thus, it cannot be detected by conventional rootkit detection methods.</description><subject>Cryptography</subject><subject>Graphics boards</subject><subject>graphics processing unit</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>rootkit</subject><subject>security</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEURRujiYj-AxeTsB7s68e0XRoY0UiiUVk3nfJGB3EG25LovxeCoKt3F-fcl1xCLoEOQWp1lYJrY9PWQ0bBlOOpBiqOSA-UkDnwAo5Jjxooci05OyVnMS4oBc1A9sjgqevSe5OyZtMwx2zyOMvuMbS4zMov9OvUdO05OandMuLF7-2T2U35MrrNpw-Tu9H1NPcSVMqlFJI7pzgIqo1GrZifM6NFVVHOwUhfu9pVSiJyYM4LqDw6KYBSRDU3vE8Gu95V6D7XGJNddOvQbl5axgGYNEWxpcSO8qGLMWBtV6H5cOHbArXbOex-Dvtvjo32vNMWMblXPEgupMYv8U8qgTI7tgD79K_lQPs3Fyy2_AfuVnCs</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>KWON, Ohmin</creator><creator>KWON, Hyun</creator><creator>YOON, Hyunsoo</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191101</creationdate><title>Rootkit inside GPU Kernel Execution</title><author>KWON, Ohmin ; KWON, Hyun ; YOON, Hyunsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-55453aa73140898e872cd2984bb033195cfafab75ee312ac41bcea54100ee7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cryptography</topic><topic>Graphics boards</topic><topic>graphics processing unit</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>rootkit</topic><topic>security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KWON, Ohmin</creatorcontrib><creatorcontrib>KWON, Hyun</creatorcontrib><creatorcontrib>YOON, Hyunsoo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KWON, Ohmin</au><au>KWON, Hyun</au><au>YOON, Hyunsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rootkit inside GPU Kernel Execution</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>E102.D</volume><issue>11</issue><spage>2261</spage><epage>2264</epage><pages>2261-2264</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>We propose a rootkit installation method inside a GPU kernel execution process which works through GPU context manipulation. In GPU-based applications such as deep learning computations and cryptographic operations, the proposed method uses the feature by which the execution flow of the GPU kernel obeys the GPU context information in GPU memory. The proposed method consists of two key ideas. The first is GPU code manipulation, which is able to hijack the execution flow of the original GPU kernel to execute an injected payload without affecting the original GPU computation result. The second is a self-page-table update execution during which the GPU kernel updates its page table to access any location in system memory. After the installation, the malicious payload is executed only in the GPU kernel, and any no evidence remains in system memory. Thus, it cannot be detected by conventional rootkit detection methods.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2019EDL8104</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2019/11/01, Vol.E102.D(11), pp.2261-2264 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2311259669 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Cryptography Graphics boards graphics processing unit Kernels Machine learning rootkit security |
title | Rootkit inside GPU Kernel Execution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rootkit%20inside%20GPU%20Kernel%20Execution&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KWON,%20Ohmin&rft.date=2019-11-01&rft.volume=E102.D&rft.issue=11&rft.spage=2261&rft.epage=2264&rft.pages=2261-2264&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2019EDL8104&rft_dat=%3Cproquest_cross%3E2311259669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311259669&rft_id=info:pmid/&rfr_iscdi=true |