An SBL-Based Coherent Source Localization Method Using Virtual Array Output

Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2019/11/01, Vol.E102.B(11), pp.2151-2158
Hauptverfasser: ZHANG, Zeyun, WU, Xiaohuan, LI, Chunguo, ZHU, Wei-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2158
container_issue 11
container_start_page 2151
container_title IEICE Transactions on Communications
container_volume E102.B
creator ZHANG, Zeyun
WU, Xiaohuan
LI, Chunguo
ZHU, Wei-Ping
description Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.
doi_str_mv 10.1587/transcom.2018EBP3309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311242496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311242496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-75a517ede556e2e9c0a47e65159752112944ca3b157e09d40379b4444ce1fd463</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-Aw9NPC92-rFlj0DwI2IwQbw2pTvAEtjFtnvAX-8SBJnLzOF5ZiYvIffAOqC6-jF6WwZXbTqcQXfY_xCCZRekBVqqBIRUl6TFMkiTroL0mtyEsGINyIG3yFuvpJP-KOnbgDkdVEv0WEY6qWrvkI4qZ9fFj41FVdJ3jMsqp9NQlAv6VfhY2zXteW93dFzHbR1vydXcrgPe_fU2mT4NPwcvyWj8_DrojRIntYiJVlaBxhyVSpFj5piVGlMFKtOKA_BMSmfFDJRGluWSCZ3NZFMOYZ7LVLTJw2Hv1lffNYZoVs27ZXPScNH4kstsT8kD5XwVgse52fpiY_3OADP72MwxNnMWW6NNDtoqRLvAk2R9LNwa_6UhMG76BuA4nW050W5pvcFS_AKQ334-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311242496</pqid></control><display><type>article</type><title>An SBL-Based Coherent Source Localization Method Using Virtual Array Output</title><source>Alma/SFX Local Collection</source><creator>ZHANG, Zeyun ; WU, Xiaohuan ; LI, Chunguo ; ZHU, Wei-Ping</creator><creatorcontrib>ZHANG, Zeyun ; WU, Xiaohuan ; LI, Chunguo ; ZHU, Wei-Ping</creatorcontrib><description>Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.</description><identifier>ISSN: 0916-8516</identifier><identifier>EISSN: 1745-1345</identifier><identifier>DOI: 10.1587/transcom.2018EBP3309</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Apertures ; coherent source ; Direction of arrival ; direction of arrival (DOA) estimation ; Iterative methods ; Linear arrays ; Localization method ; Machine learning ; Military applications ; off-grid model ; Signal processing ; Signal to noise ratio ; sparse Bayesian learning (SBL) ; sparse signal recovery (SSR)</subject><ispartof>IEICE Transactions on Communications, 2019/11/01, Vol.E102.B(11), pp.2151-2158</ispartof><rights>2019 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c473t-75a517ede556e2e9c0a47e65159752112944ca3b157e09d40379b4444ce1fd463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>ZHANG, Zeyun</creatorcontrib><creatorcontrib>WU, Xiaohuan</creatorcontrib><creatorcontrib>LI, Chunguo</creatorcontrib><creatorcontrib>ZHU, Wei-Ping</creatorcontrib><title>An SBL-Based Coherent Source Localization Method Using Virtual Array Output</title><title>IEICE Transactions on Communications</title><addtitle>IEICE Trans. Commun.</addtitle><description>Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.</description><subject>Algorithms</subject><subject>Apertures</subject><subject>coherent source</subject><subject>Direction of arrival</subject><subject>direction of arrival (DOA) estimation</subject><subject>Iterative methods</subject><subject>Linear arrays</subject><subject>Localization method</subject><subject>Machine learning</subject><subject>Military applications</subject><subject>off-grid model</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>sparse Bayesian learning (SBL)</subject><subject>sparse signal recovery (SSR)</subject><issn>0916-8516</issn><issn>1745-1345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiYj-Aw9NPC92-rFlj0DwI2IwQbw2pTvAEtjFtnvAX-8SBJnLzOF5ZiYvIffAOqC6-jF6WwZXbTqcQXfY_xCCZRekBVqqBIRUl6TFMkiTroL0mtyEsGINyIG3yFuvpJP-KOnbgDkdVEv0WEY6qWrvkI4qZ9fFj41FVdJ3jMsqp9NQlAv6VfhY2zXteW93dFzHbR1vydXcrgPe_fU2mT4NPwcvyWj8_DrojRIntYiJVlaBxhyVSpFj5piVGlMFKtOKA_BMSmfFDJRGluWSCZ3NZFMOYZ7LVLTJw2Hv1lffNYZoVs27ZXPScNH4kstsT8kD5XwVgse52fpiY_3OADP72MwxNnMWW6NNDtoqRLvAk2R9LNwa_6UhMG76BuA4nW050W5pvcFS_AKQ334-</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>ZHANG, Zeyun</creator><creator>WU, Xiaohuan</creator><creator>LI, Chunguo</creator><creator>ZHU, Wei-Ping</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20191101</creationdate><title>An SBL-Based Coherent Source Localization Method Using Virtual Array Output</title><author>ZHANG, Zeyun ; WU, Xiaohuan ; LI, Chunguo ; ZHU, Wei-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-75a517ede556e2e9c0a47e65159752112944ca3b157e09d40379b4444ce1fd463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Apertures</topic><topic>coherent source</topic><topic>Direction of arrival</topic><topic>direction of arrival (DOA) estimation</topic><topic>Iterative methods</topic><topic>Linear arrays</topic><topic>Localization method</topic><topic>Machine learning</topic><topic>Military applications</topic><topic>off-grid model</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>sparse Bayesian learning (SBL)</topic><topic>sparse signal recovery (SSR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Zeyun</creatorcontrib><creatorcontrib>WU, Xiaohuan</creatorcontrib><creatorcontrib>LI, Chunguo</creatorcontrib><creatorcontrib>ZHU, Wei-Ping</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Zeyun</au><au>WU, Xiaohuan</au><au>LI, Chunguo</au><au>ZHU, Wei-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An SBL-Based Coherent Source Localization Method Using Virtual Array Output</atitle><jtitle>IEICE Transactions on Communications</jtitle><addtitle>IEICE Trans. Commun.</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>E102.B</volume><issue>11</issue><spage>2151</spage><epage>2158</epage><pages>2151-2158</pages><issn>0916-8516</issn><eissn>1745-1345</eissn><abstract>Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transcom.2018EBP3309</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8516
ispartof IEICE Transactions on Communications, 2019/11/01, Vol.E102.B(11), pp.2151-2158
issn 0916-8516
1745-1345
language eng
recordid cdi_proquest_journals_2311242496
source Alma/SFX Local Collection
subjects Algorithms
Apertures
coherent source
Direction of arrival
direction of arrival (DOA) estimation
Iterative methods
Linear arrays
Localization method
Machine learning
Military applications
off-grid model
Signal processing
Signal to noise ratio
sparse Bayesian learning (SBL)
sparse signal recovery (SSR)
title An SBL-Based Coherent Source Localization Method Using Virtual Array Output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20SBL-Based%20Coherent%20Source%20Localization%20Method%20Using%20Virtual%20Array%20Output&rft.jtitle=IEICE%20Transactions%20on%20Communications&rft.au=ZHANG,%20Zeyun&rft.date=2019-11-01&rft.volume=E102.B&rft.issue=11&rft.spage=2151&rft.epage=2158&rft.pages=2151-2158&rft.issn=0916-8516&rft.eissn=1745-1345&rft_id=info:doi/10.1587/transcom.2018EBP3309&rft_dat=%3Cproquest_cross%3E2311242496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311242496&rft_id=info:pmid/&rfr_iscdi=true